Parameterization of the APSIM-Oats model for simulating the growth of black oat cultivated for forage purposes under cut-and-carry management

Palavras-chave: decision support; forage management; crop modeling; water stress.

Resumo

Studies on modeling the growth of annual crops are typically conducted for economically significant crops like soybeans, corn, and wheat. Conversely, there has been limited exploration of annual forage crops, despite their substantial importance, as they can help address forage supply shortages during periods of low production for perennial tropical forages. This study aimed to parameterize the APSIM-Oats model for simulating the growth of black oats (Avena strigosa Schreb cv. IAPAR 61 Ibiporã) cultivated for forage purposes and managed under a cut-and-carry system. Two experiments were conducted in 2018 and 2019 in Piracicaba, São Paulo State, Brazil, encompassing both irrigated and non-irrigated plots. Various productive, biometric, and soil moisture variables were monitored throughout the crop cycles. Parameters were manually calibrated through a trial-and-error process until the estimates closely matched the observed data. Model evaluation involved comparing observed and simulated data using statistical indices. The most favorable results were obtained for live biomass, leaf mass, and stem mass (with modeling efficiency exceeding 0.55 in the rainfed system and surpassing 0.34 for the irrigated system). Estimates of soil water content exhibited better accuracy for shallower soil layers (0 to 0.30 m). The calibration of the APSIM-Oats model for black oats yielded satisfactory estimates for live biomass under rainfed conditions. The simulations in this study represent an initial step in modeling the growth of black oats.

Downloads

Não há dados estatísticos.

Referências

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop requirements. Rome, IT: FAO. (FAO Irrigation and Drainage Paper, 56).

Alves, S. J. (2003). Dinâmica de crescimento da aveia preta sob diferentes doses de nitrogênio e ajuste de modelo matemático de rendimento potencial em função de parâmetros climáticos. Scientia Agraria, 4, (1-2), 81-96, DOI: http://dx.doi.org/10.5380/rsa.v4i1.1080

Ashford, D. L., & Reeves, D. W. (2003). Use of a mechanical roller-crimper as an alternative kill method for cover crops. American Journal of Alternative Agriculture, 18(1), 37-45. DOI: http://doi.org/10.1079/AJAA200232

Barth Neto, A., Savian, J. V., Schons, R. T., Bonnet, O. J. F., Canto, M. W., Moraes, A., … Carvalho, P. C. F. (2014). Italian ryegrass establishment by self-seeding in integrated crop – livestock systems: Effects of grazing management and crop rotation strategies. European Journal of Agronomy, 57, 77-83. DOI: http://doi.org/10.1016/j.eja.2014.04.005

Bosi, C., Pezzopane, J. R. M., & Sentelhas, P. C. (2019). Soil water availability in a full sun pasture and in a silvopastoral system with eucalyptus. Agroforest Systems, 94(2), 429-440. DOI: http://doi.org/10.1007/s10457-019-00402-7

Camargo, A. P., & Sentelhas, P. C. (1997). Avaliação do desempenho de diferentes métodos de estimativas da evapotranspiração potencial no Estado de São Paulo. Revista Brasileira de Agrometeorologia, 5(1), 96-97.

Dalgliesh, N., Hochman, Z., Huth, N., & Holzworth, D. (2016). Field Protocol to APSoil characterisations. Version 4. Camberra, AU: CSIRO Agriculture and Food Australia.

Deen, W., Cousens, R., Warringa, J., Bastiaans, L., Carberry, P., Rebel, K., … Wang, E. (2003) An evaluation of four crop: Weed competition models using a common data set. Weed Research, 43(2), 116-129. DOI: http://doi.org/10.1046/j.1365-3180.2003.00323.x

Dial, H. L. (2014). Plant guide for black oat (Avena strigosa Schreb.) (USDA-Natural Resources Conservation Service). Tucson, AZ: Tucson Plant Materials Center.

Federizi, L. C., & Mundstock, C. M. (2004). Fodder oats: an overview for South America. In J. M. Suttie, & S. G. Reynolds (Eds.), Fodder oats: A world overview (FAO Plant production and protection Series, 33). Rome, IT: FAO.

Feliceti, M. L., Possenti, J. C., Bahry, C. A., Zuanazzi, N., Ghisi, N., Santos, I. N. T., & Quisini, R. (2023). Genetic improvement of black oats: a scientometric review. Acta Scientiarum. Agronomy, 45(1), 1-11. DOI: https://doi.org/10.4025/actasciagron.v45i1.60016

Fessehazion, M. K., Annandale, J. G., Everson, C. S., Stirzaker, R. J., & Tesfamariam, E. H. (2014). Evaluating of soil water balance (SWB-Sci) model for water and nitrogen interactions in pasture: Example using annual ryegrass. Agricultural Water Management, 146, 238-248. DOI: https://doi.org/10.1016/j.agwat.2014.08.018

Fontaneli, R. S., Santos, H. P., Fontaneli, R. S., Oliveira, J. T., Lehmen, R. I., & Dreon, G. (2012). Gramíneas forrageiras anuais de inverno. Brasília, DF: Embrapa.

George, M. R., Larson-Praplan, S., Doran, M., & Tate, K. W. (2013). Grazing nassella. Rangelands, 35(2), 17–21. DOI: https://doi.org/10.2111/RANGELANDS-D-12-00077.1

Haun, J. R. (1973). Visual quantification of wheat development. Agronomy Journal, 65(1), 116-119. DOI: https://doi.org/10.2134/agronj1973.00021962006500010035x

Instituto Agronômico do Paraná [IAPAR]. (2000). Aveia Preta IAPAR 61 IBIPORÃ. Londrina, PR: IAPAR.

Jamieson, P. D., Brooking, I. R., Porter, J. R., & Wilson, D. R. (1995). Prediction of leaf appearance in wheat: a question of temperature. Field Crops Research, 41(1), 35-44. DOI: https://doi.org/10.1016/0378-4290(94)00102-I

Holzworth, D., Huth, N. I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., Verrall, S., Herrmann, N.I., Zheng, B., Snow, V. (2018). Environmental Modelling & Software APSIM Next Generation : Overcoming challenges in modernising a farming systems model. Environmental Modelling and Software, 103, 43–51. DOI: https://doi.org/10.1016/j.envsoft.2018.02.002

Jing, Q., Mcconkey, B., Qian, B., Smith, W., Grant, B., Shang, J., Liu, J., … Luce, M. St (2021). Assessing water management effects on spring wheat yield in the Canadian Prairies using DSSAT wheat models. Agricultural Water Management, 244, 106591. DOI: https://doi.org/10.1016/j.agwat.2020.106591

Jones, C. A., & Kiniry J. R. (1986). CERES-Maize: A simulation model of maize growth and development. College Station. Austin, TX: Texas A&M University Press.

Kunrath, T. R., Cadenazzi, M., Brambilla, D. M., Anghinoni, I., Moraes, A., Barro, R. S., & Carvalho, P. C. F. (2014). Management targets for continuously stocked mixed oat × annual ryegrass pasture in a no-till integrated crop – livestock system. European Journal of Agronomy, 57, 71-76. DOI: https://doi.org/10.1016/j.eja.2013.09.013

Littleboy, M., Silburn, D. M., Freebairn, D. M., Woodruff, D. R., Hammer, G. L., & Leslie, J. K. (1992). Impact of soil erosion on production in cropping systems. Development and validation of a simulation model. Soil Research, 30(5), 757-774. DOI: https://doi.org/10.1071/SR9920757

Liu, W., Yu, K., He, T., Li, F., Zhang, D., & Liu J. (2013). The low temperature induced physiological responses of avena nuda L., a cold-tolerant plant species. The Scientific World Journal, 2013(1), 1-7. DOI: https://doi.org/10.1155/2013/658793

Locatelli, A. B., Federizzi, L. C., Milach, S. C. K., & McElroy, A. R. (2008). Flowering time in oat: Genotype characterization for photoperiod and vernalization response. Field Crops Research, 106(3), 242-247. DOI: https://doi.org/10.1016/j.fcr.2007.12.006

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282-290. DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Ojeda, J. J., Pembleton, K. G., Islam, M. R., Agnusdei, M. G., & Garcia, S. C. (2016). Evaluation of the agricultural production systems simulator simulating Lucerne and annual ryegrass dry matter yield in the Argentine Pampas and south-eastern Australia. Agricultural Systems, 143, 61-75. DOI: https://doi.org/10.1016/j.agsy.2015.12.005

Ojeda, J. J., Cavigliab, O. P., Irisarrid, J. G. N., & Agnusdei, M. G. (2018a). Modelling inter-annual variation in dry matter yield and precipitation use efficiency of perennial pastures and annual forage crops sequences. Agricultural and Forest Meteorology, 259(2017), 1-10. DOI: https://doi.org/10.1016/j.agrformet.2018.04.014

Ojeda J. J, Pembleton, K. G., Caviglia, O. P., Islam, M. R., Agnusdei, M. G., & Garcia, S. C. (2018b). Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas. European Journal of Agronomy, 92, 84-96. DOI: https://doi.org/10.1016/j.eja.2017.10.004

Peake, A., Whitbread, A., Davoren, B., Braun, J. & Limpus, S. (2008). The development of a model in APSIM for the simulation of grazing oats and oaten hay. In M. Unkovich (Ed.), “Global Issues. Paddock Action.” Proceedings of 14th Agronomy Conference. Adelaide, AU: South Australian Agronomy Conference.

Peake, A., Brown, H., Zyskowski, R., Teixeira, E. I., & Huth, N. (2020). The APSIM oats model. Retrieved on Aug. 10, 2023 from https://apsimdev.apsim.info/ApsimX/Releases/2020.11.20.5818/Oats.pdf

Pembleton, K. G., Rawnsley, R. P., Jacobs, J. L., Mickan, F. J., Cullen B. R., & Ramilan, T. (2013). Evaluating the accuracy of the Agricultural Production Systems Simulator (APSIM) simulating growth, development, and herbage nutritive characteristics of forage crops grown in the south-eastern dairy regions of Australia. Crop & Pasture Science, 64(2), 147-164. DOI: https://doi.org/10.1071/CP12372

Pezzopane, J. R. M., Santos, P. M., Cruz, P. G., Bosi, C., & Sentelhas, P. C. (2018). An integrated agrometeorological model to simulate Marandu palisade grass productivity. Field Crops Research, 224, 13-21. DOI: https://doi.org/10.1016/j.fcr.2018.04.015

Santos, M. G., Boote, K. J., Faria, R. T., & Hoogenboom, G. (2019). Simulation of productivity and soil moisture under Marandu palisade grass using the CSM-CROPGRO-Perennial Forage model. Crop and Pasture Science, 70(2), 159-168. DOI: https://doi.org/10.1071/CP18258

Sbrissia, A. F., Duchini, P. G., Echeverria, J. R., Miqueloto, T., Bernardon, A., & Américo, L. F. (2017). Animal production on cultivated pasturelands in regions of temperate climate of Latin America. Archivos Latinoamericanos de Producción Animal, 25(1-2), 45-58.

Sonego, M., Jamieson, P. D., Moot, D. J., & Martin, R. J. (1999). Development and growth of oat leaves at different temperatures and nitrogen levels. Agronomy New Zeland, 29, 75-81.

Souza, D. P. de, Mendonça, F. C., Bosi, C., Pezzopane, J. R. M., & Santos, P. M. (2022). APSIM-Tropical Pasture model parameterization for simulating Marandu palisade grass growth and soil water in irrigated and rainfed cut-and-carry systems. Grass and Forage Science, 77(3), 216–231. DOI: https://doi.org/10.1111/gfs.12560

Suttie, J. M., & Reynolds, S. G. (2004). Fodder oats: a world overview (FAO Plant Production and Protection Series, 33). Rome, IT: FAO.

Tonato, F., Pedreira, B. C., Pedreira, C. G. S., & Pequeno, D. N. L. (2014). Aveia preta e azevém anual colhidos por interceptação de luz ou intervalo fixo de tempo em sistemas integrados de agricultura e pecuária no Estado de São Paulo. Ciência Rural, 44(1), 104-110. DOI: https://doi.org/10.1590/S0103-84782014000100017

Ugrenovic, V., Popovic, V., Ugrinovic, M. Filipovic, V., Mackic, K., Ljubicic, N., ... Lakic, Ž. (2021). Black Oat (Avena strigosa Schreb.) ontogenesis and agronomic performance in organic cropping system and pannonian environments. Agriculture, 11(1), 1-14. DOI: https://doi.org/10.3390/agriculture11010055

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., … Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005. DOI: https://doi.org/10.1029/JC090iC05p08995

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 15-421. DOI: http://dx.doi.org/10.1111/j.1365-3180.1974.tb01084.x

Zhang, Y., Zhang, L., Yang, N., Huth, N., Wang, E., Werf, W., … Anten, N. P. R. (2019). Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 266-267, 84-197. DOI: https://doi.org/10.1016/j.agrformet.2018.12.019.

Publicado
2024-11-08
Como Citar
Souza, D. P. de, Bosi, C., Mendonça, F. C., & Pezzopane, J. R. M. (2024). Parameterization of the APSIM-Oats model for simulating the growth of black oat cultivated for forage purposes under cut-and-carry management. Acta Scientiarum. Agronomy, 47(1), e69505. https://doi.org/10.4025/actasciagron.v47i1.69505
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus