Low-density marker panels for genomic prediction in Coffea arabica L.

Palavras-chave: genetic improvement; coffee; genomic selection; G-BLUP.

Resumo

Developing new cultivars, particularly in perennial species like Coffea arabica, can be a time-consuming process. Employing molecular markers in genome-wide selection (GWS) for predicting genetic values offers an alternative to accelerate this process. However, implementing GWS typically involves genotyping many markers for both training and candidate individuals, which can increase the total genotyping cost for the breeding program. Therefore, this study aimed to assess the feasibility of using low-density marker panels to predict the genetic merit of C. arabica for a range of desirable agronomic traits. For this purpose, GWS analyses were performed using the G-BLUP method with panels of varying marker densities, selected based on marker effect magnitude. The results indicate that employing lower-density panels might be advantageous for this species' improvement. Models based on these panels yielded accurate predictions for various traits and demonstrated high agreement in terms of selected individuals compared to more complex models.

Downloads

Não há dados estatísticos.

Referências

Aliloo, H., Mrode, R., Okeyo, A. M., Ni, G., Goddard, M. E., & Gibson, J. P. (2018). The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Journal of Dairy Science, 101(10), 9108-9127. DOI: https://doi.org/10.3168/jds.2018-14621

Alkimim, E. R., Caixeta, E. T., Sousa, T. V., Pereira, A. A., Oliveira, A. C. B., Zambolim, L., & Sakiyama, N. S. (2017). Marker-assisted selection provides arabica coffee with genes from other Coffea species targeting on multiple resistance to rust and coffee berry disease. Molecular Breeding, 37(6), 1-10. DOI: https://doi.org/10.1007/s11032-016-0609-1

Caixeta, E. T., Pestana, K. N., & Pestana, R. K. N. (2015). Melhoramento do cafeeiro: ênfase na aplicação dos marcadores moleculares. In G. O. Garcia, E. F. Reis, J. S. Lima, A. C. Xavier, & W. N. Rodrigues (Orgs.), Tópicos especiais em produção vegetal V. Alegre, ES: CAUFES.

Carvalho, C. H. S. (2008). Cultivares de Café: origem, características e recomendações. Brasília, DF: Embrapa Café.

Goddard, M. E., & Hayes, B. J. (2007). Genomic selection. Journal of Animal Breeding and Genetics, 124(6), 323-330. DOI: https://doi.org/10.1111/j.1439-0388.2007.00702.x

Habier, D., Fernando, R. L., & Dekkers, J. C. M. (2009). Genomic selection using-low density marker panels. Genetics, 182(1), 343-353. DOI: https://doi.org/10.1534/genetics.108.100289

International Coffee Organization [ICO]. (2023). Coffee Report and Outlook (CRO). Retrieved on Sep. 10, 2023 https://icocoffee.org/documents/cy2022-23/

Kriaridou, C., Tsairidou, S., Houston, R. D., & Robledo, D. (2020). Genomic prediction using low density marker panels in aquaculture: performance across species, traits, and genotyping platforms. Frontiers in Genetics, 11(124), 1-8. DOI: https://doi.org/10.3389/fgene.2020.00124

Landis, J., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. DOI: https://doi.org/10.2307/2529310

Ma, Y., Reif, J. C., Jiang, Y., Wen, Z., Wang, D., Liu, Z., … Qiu, L. (2016). Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Molecular Breeding, 36(113), 1-10. DOI: https://doi.org/10.1007/s11032-016-0504-9

Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome wide dense marker maps. Genetics, 157(4), 1819-1829. DOI: https://doi.org/10.1093/genetics/157.4.1819

Partelli, F. L., Covre, A. M., Oliveira, M. G., Alexandre, R. S., Vitória, E. L., & Silva, M.B. (2014). Root system distribution and yield of ‘Conilon’ coffee propagated by seeds or cuttings. Pesquisa Agropecuária Brasileira, 49(5), 349-355. DOI: https://doi.org/10.1590/S0100-204X2014000500004

Resende, M. D. V. (2016). Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330-339. DOI: https://doi.org/10.1590/1984-70332016v16n4a49

Resende, M. D. V., Silva, F. F., Lopes, O. S., & Azevedo, C. F. (2012). Seleção Genômica Ampla (GWS) via Modelos Mistos (REML/BLUP), Inferência Bayesiana (MCMC), Regressão Aleatória Multivariada e Estatística Espacial. Viçosa, MG: Departamento de Estatística/UFV.

Santana, L. S., Silva Ferraz, G. A., Teodoro, A. J. S., Santana, M. S., Rossi, G., & Palchetti, E. (2021). Advances in precision coffee growing research: A bibliometric review. Agronomy, 11(8), 1-16. DOI: https://doi.org/10.3390/agronomy11081557

Sousa, T. V., Caixeta, E. T. C., Alkimim, E. R., Oliveira, A. C. B., Pereira, A. A., Sakiyama, N. S., ... Resende, M. D. V. (2019a). Early selection enable by the implementation of genomic selection in Coffea arabica Breeding. Frontiers in Plant Science, 9(1934), 1-12. DOI: https://doi.org/10.3389/fpls.2018.01934

Sousa, M. B., Galli, G., Lyra, D. H., Granato, I. S. C., Matias, F. I., Alves, F. C., & Fritsche-Neto, R. (2019b). Increasing accuracy and reducing costs of genomic prediction by marker selection. Euphytica, 215(18), 215-218. DOI: https://doi.org/10.1007/s10681-019-2339-z

Vidal, R. O., Mondego, J. M. C., Pot, D., Ambrósio, A. B., Andrade, A. C., Pereira, L. F. P., … Pereira, G. A. G. (2010). A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica. Plant Physiology, 154(3), 1053-1066. DOI: https://doi.org/10.1104/pp.110.162438

Vitezica, Z. G., Varona, L., & Legarra, A. (2013). On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 195(4), 1223-1230. DOI: https://doi.org/10.1534/genetics.113.155176

Wellmann, R., PreuB, S., Tholen, E., Heinkel, J., Wimmers, K., & Bennewitz, J. (2013). Genomic selection using low density marker panels with application to a sire line in pigs. Genetics Selection Evolution, 45(28), 1-11. DOI: https://doi.org/10.1186/1297-9686-45-28

Zhang, H., Yin, L., Wang, M., Yuan, X., & Liu, X. (2019). Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics, 10(189), 1-10. DOI: https://doi.org/10.3389/fgene.2019.00189

Publicado
2024-11-08
Como Citar
Arcanjo, E. S., Nascimento, M., Azevedo, C. F., Caixeta, E. T., Oliveira, A. C. B. de, Pereira, A. A., & Nascimento, A. C. C. (2024). Low-density marker panels for genomic prediction in Coffea arabica L. Acta Scientiarum. Agronomy, 47(1), e69698. https://doi.org/10.4025/actasciagron.v47i1.69698
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus