Postharvest quality of atemoya at various stages of ripeness grown in semi-arid conditions
Resumo
Atemoya has a short post-harvest shelf life due to its high metabolic activity. Limited information is available on the optimal harvest time for atemoya grown in semi-arid conditions. This study aimed to evaluate the quality of atemoya fruits at various maturity stages under semi-arid conditions. Fruit was harvested from a commercial orchard and the experiment was conducted in a completely randomized design (CRD) with a 3x5 factorial scheme. This included three maturation stages (100, 105, and 110 days after pollination - DAP) and five refrigerated storage periods (0, 3, 6, 9, and 12 days), with four repetitions. The fruits were stored at 15 ± 2°C and 74 ± 2% RH and subjected to physical, chemical, and biochemical evaluations. Throughout storage, there was a significant fresh mass loss of 13.83, 11.99, and 11.92% for fruits harvested at 100, 105, and 110 DAP, respectively. Firmness and starch content also decreased as starch was converted into sugars. Across all maturation stages, the shelf life was limited to nine days due to compromised appearance, primarily cracks and peel darkening. Fruits harvested at 105 and 110 DAP exhibited better quality at the end of storage, including improved appearance, greater mass, lower weight loss, and higher soluble solids and vitamin C content. The results suggest that atemoya fruits can be harvested between 105 and 110 DAP under semi-arid conditions. Thus, atemoya shows commercial potential for production in the semi-arid region.
Downloads
Referências
Anese, R. O., & Fronza, D. (2015). Fisiologia pós-colheita em fruticultura. Universidade Federal de Santa Maria.
Association of Official Analytical Chemistry [AOAC]. (2002). Official methods of analysis of the Association of Official Analytical Chemistry (17th ed.).
Barbosa, M. C. F., Souza, P. A., Coelho, E. L., Silva, M. S., Sousa, D. V., Freitas, R. V. S., & Ferreira, E. O. (2011). Avaliação do índice de rachadura em atemoia Gefner armazenada a temperatura ambiente. Bragantia, 4, 21-28.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Chagas, P. C., Crane, J., Chagas, E. A., Vendrame, W., Costa, B. N. S., Neto, A. R., & Moura, E. A. (2022). Determining the preliminary performance of selected Annonaceae cultivars in subtropical conditions. Comunicata Scientiae, 13(3832), 1-8. https://doi.org/10.14295/cs.v13.3832
Chen, H., Lin, H., Jiang, X., Lin, M., & Fan, Z. (2022). Amelioration of chilling injury and enhancement of quality maintenance in cold-stored guava fruit by melatonin treatment. Food Chemistry: X, 14, 1-8. https://doi.org/10.1016/j.fochx.2022.100297
Chitarra, M. I. F., & Chitarra, A. B. (2005). Pós-colheita de frutos e hortaliças- fisiologia e manuseio (2. ed.). Universidade Federal de Lavras.
Chou, C. H., Wang, C. Y., Shyu, Y. T. & Wu, S. J. (2021). The effect of high‐pressure processing on reducing the glycaemic index of atemoya puree. Journal of the Science of Food and Agriculture, 101(4), 1546-1553. https://doi.org/10.1002/jsfa.10773
Cruz-Bravo, R. K., Guzmán-Maldonado, S. H., Araiza-Herrera, H. A., & Zegbe, J. A. (2019). Storage alters physicochemical characteristics, bioactive compounds and antioxidant capacity of cactus pear fruit. Postharvest Biology and Technology, 150, 105-111. https://doi.org/10.1016/j.postharvbio.2019.01.001
Deng, L. Z., Pan, Z., Zhang, Q., Liu, Z. L., Zhang, Y., Meng, J. S., Gao, Z-J., &. Xiao, H. W. (2019). Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots. Carbohydrate Polymers, 222, 114980. https://doi.org/10.1016/j.carbpol.2019.114980
Gong, X., Wu, X., Qi, N., Li, J., Zhang, H., & Huo, Y. (2020). Changes in the biochemical characteristics and volatile fingerprints of atemoya during postharvest ripening at room temperature. Quality Assurance and Safety of Crops & Foods, 12(4), 26-35. https://doi.org/10.15586/qas.v12i4.786
He, M., Ge, Z., Hong, M., Hongxia, Q., Duan, X., Ze, Y., Li, T., & Jiang, Y. (2020). Alleviation of pericarp browning in harvested litchi fruit by synephrine hydrochloride in relation to membrane lipids metabolism. Postharvest Biology and Technology, 166, 111223. https://doi.org/10.1016/j.postharvbio.2020.111223
Hou, C. Y., Hazeena, S. H., Li, P. X., Hsieh, S. L., Hsieh, C. W., Chen, M. H., Shih, M-K., Yu, M-C., & Liang, Y. S. (2023). Postharvest quality and prolong storage time of atemoya (Annona squamosa x A. cherimola hybrids) fruit: coating with D-limonene nanoemulsion edible film. International Journal of Food Properties, 26(1), 1098-1113. https://doi.org/10.1080/10942912.2023.2199170
Instituto Adolfo Lutz [IAL]. (2008). Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz.
Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45(4),1390-1393. https://doi.org/10.1021/jf960282f
Li, J., Luo, M., Zhou, X., Zhou, Q., Wei, B., Cheng, S., & Ji, S. (2021). Polyamine treatment ameliorates pericarp browning in cold-stored ‘Nanguo’pears by protecting mitochondrial structure and function. Postharvest Biology and Technology, 178, 111553. https://doi.org/10.1016/j.postharvbio.2021.111553
Lima, M. A. C., Alves, R. E., Biscegli, C. I., Filgueiras, H. A. C., & Cocozza, F. D. M. (2004). Conservação de melões Gália ‘Solar King’ tratados com 1-metilciclopropeno. Horticultura Brasileira, 22(1), 121-126. https://doi.org/10.1590/S0102-05362004000100026
Lin, Y., Lin, Y., Lin, H.; Lin, M., Li, H., Yuan, F., Chen, Y., & Xiao, J. (2018). Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage. Food Chemistry, 264, 1-8. https://doi.org/10.1016/j.foodchem.2018.05.031
Liu, K., Li, H., Yuan, C., Huang, Y., Chen, Y., & Liu, J. (2015). Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCH-scale. Scientia Horticulturae, 181, 76-80. https://doi.org/10.1016/j.scienta.2014.10.046
Miller, G. L. (1959). Use of dinitrosalicylit acid reagent for determination of reducing sugars. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Minolta (2007). Precise color communication: Color control from feeling to instrumentation. Minolta Corp. Ltda.
Moraes, M. R., Ryan, S. M., Godoy, H. T., Thomas, A. L., Maia, J. G. S., Richards, K. M., Kevin, T., & Smith, R. E. (2020). Phenolic compounds and metals in some edible annonaceae fruits. Biological Trace Element Research, 197, 676-682. https://doi.org/10.1007/s12011-019-02005-w
Moura, E. A., Chagas, P. C., Oliveira, R. R., Taveira, D. L. L., Grigio, M. L., & Araújo, W. F. (2020). Determination of the harvest time of sugar apples (Annona squamosa L.) in function of carpel interspace. Acta Scientiarum. Agronomy, 43(1), 1-10. https://doi.org/10.4025/actasciagron.v43i1.48732
Pareek, S., Yahia, E. M., Pareek, O. P., & Kaushik, R. A. (2011). Postharvest physiology and technology of Annona fruits. Food Research International, 44(7), 1741-1751. https://doi.org/10.1016/j.foodres.2011.02.016
Pereira, M. C. T., Nietsche, S., São José, A. R., Lemos, E. E. P., Mizubutsi, G., Corsato, C. F., & Alvarenga, C. D. (2019). Anonáceas: Pinha (Annona squamosa L.), Atemóia (Annona squamosa x Annona cherimola Mill.) e graviola (Annona muricata). In T. J. Paula-Junior & M. Venzon (Eds.), 101 Culturas: manual de tecnologias agrícolas (2. ed, pp. 111-123). Epamig.
Pinto, L. K. A., Martins, M. L. L., Resende, E. D., & Thièbaut, J. T. L. (2011). Atividade da pectina metilesterase e da β-galactosidase durante o amadurecimento do mamão cv. Golden. Revista Brasileira de Fruticultura, 33(3), 713-722. https://doi.org/10.1590/S0100-29452011005000087
Oliveira, Z. L., Souza, P. A., Moura, C. F. H., Costa, F. B., Silva Freitas, R. V., Batista, E. M., Regis, A. A., & Reges, S. C. N. (2021). Armazenamento refrigerado de atemoia ‘Gefner’ em atmosfera modificada. Research, Society and Development, 10(11), 1-21. http://dx.doi.org/10.33448/rsd-v10i11.18095
Oliveira, V. R. D., Costa, R. N. T., Nunes, K. G., & Barros, V. D. S. (2022). Water footprint of banana in the Brazilian semi-arid region. Revista Ciência Agronômica, 53, 1-10. https://doi.org/10.5935/1806-6690.20220036
Rstudio Team (2021). RStudio: Integrated development environment for R. RStudio. http://www.rstudio.com
Sanchez-Moreno, C., Larrauri, J. A., & Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
Santos, W. N. D., Sauthier, M. C. S., Cavalcante, D. D., Benevides, C. M., Dias, F. S., & Santos, D. C. (2016). Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill.) and evaluation using multivariate analysis techniques. Anais da Academia Brasileira de Ciências, 88(3), 1243-1252. https://doi.org/10.1590/0001-3765201620150537
Santos, J. M. S. M., Figueiredo, S. N., Ramos, V. C., Santana, S. F., Cerqueira, R. M. S., Silva, J. M., Oliveira Junior, L. F. G., & Freitas, M. I. (2018). Qualidade pós-colheita de duas variedades de tomates. Revista Craibeiras de Agroecologia, 3(1), 1-5.
Sousa, F. C., Sousa, E. P., Cruz, C. S. A., Gomes, J. P., & Almeida, F. A. C. (2013). Parâmetros físicos e físico-químicos da atemóia ‘Gefner’ em diferentes estádios de maturação. Revista Brasileira de Produtos Agroindustriais, 15(4), 329-334. https://doi.org/10.15871/1517-8595/rbpa.v15n4p329-334
Souza, P. A., Freitas, R. V. S., Batista, E. M., Costa, F. B., & Maracajá, P. B. (2015). Armazenamento de atemoias (Annona squamosa x Annona cherimola) recobertas com filme PVC. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 10(5), 155-159. http://dx.doi.org/10.18378/rvads.v10i5.3349
Wang, D., & Seymour, G. B. (2022). Molecular and biochemical basis of softening in tomato. Molecular Horticulture, 2(1), 1-10. https://doi.org/10.1186/s43897-022-00026-z
Yang, W. H., Zeng, H., Zou, M. H., Lu, C. Z., & Huang, X. M. (2011). An overview of the roles of cell wall modification in fruit pericarp cracking. Journal of Tropical Crops, 32, 1995-1999. https://doi.org/10.3969/j.issn.1000-2561.2011.10.040
Yemn, E. W., & Willis, A. J. (1954). The estimation of carbohydrate in plant extacts by anthrone. The Biochemical Journal, 57(3), 508-514. https://doi.org/10.1042/bj0570508
Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021a). Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends in Food Science & Technology, 113, 355-365. https://doi.org/10.1016/j.tifs.2021.05.009
Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021b). UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology, 180, 111613. https://doi.org/10.1016/j.postharvbio.2021.111613
Zhang, L., Huang, C., Zhao, Y., Zheng, C., & Hu, C. (2023a). Post-ripening and senescence behavior of atemoya (Annona cherimola × A. squamosa) under two typical storage temperatures. Postharvest Biology and Technology, 200, 112336. https://doi.org/10.1016/j.postharvbio.2023.112336
Zhang, W., Pan, Y., Jiang, Y., & Zhang, Z. (2023b). Advances in control technologies and mechanisms to treat peel browning in postharvest fruit. Scientia Horticulturae, 311, 111798. https://doi.org/10.1016/j.scienta.2022.111798
Zheng, S., Wang, X., & Wang, Z. (2019). The analysis of cell wall degrading enzymes in ripening blueberry pulp in different post-harvest temperature. IOP Conference Series: Earth and Environmental Science, 237(5), 1-5. https://doi.org/10.1088/1755-1315/237/5/052065
Zhu, F., Wen, W., Cheng, Y., & Fernie, A. R. (2022). The metabolic changes that effect fruit quality during tomato fruit ripening. Molecular Horticulture, 2(2), 1-19. https://doi.org/10.1186/s43897-022-00024-1
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.