Thermodynamic properties of moisture sorption of soybean (Glycine max L.) grains
Resumo
This study investigated the thermodynamic properties of water sorption in soybean using the DM 68I69 Ipro variety from Campo Verde, Mato Grosso, Brazil. Grains with initial moisture contents of 21.95% (w.b.) and 3.50% (w.b.) were used for desorption and adsorption analyses, respectively. The static-gravimetric method determined equilibrium moisture content at various temperatures (10, 20, 30, 40, and 50°C) and relative humidity (between 0.11 and 0.92 ± 2%). The Modified Halsey model quantified the hygroscopicity of soybean. Key findings include: (a) desorption equilibrium moisture content exceeded adsorption values, demonstrating hysteresis; (b) decreasing equilibrium moisture content increased the energy required for water removal and its release during adsorption; (c) differential entropy of desorption and adsorption increased with decreasing equilibrium moisture content; (d) Gibbs free energy decreased with increasing temperature for both desorption and adsorption. The enthalpy-entropy compensation theory effectively described the observed phenomena.
Downloads
Referências
Arslan-Tontul, S. (2020). Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT, 119, e108859. https://doi.org/10.1016/j.lwt.2019.108859
Aviara, N. A., Ojediran, J. O., Marwan, S. I. U., & Raji, A. O. (2016). Effect of moisture sorption hysteresis on thermodynamic properties of two millet varieties. Agricultural Engineering International: CIGR Journal, 18(1), 363-383.
Basu, S., Shivhare, U. S., & Muley, S. (2013). Moisture adsorption isotherms and glass transition temperature of pectin. Journal of Food Science and Technology, 50, 585-589. https://doi.org/10.1007/s13197-011-0327-y.
Bonner, I. J., & Kenney, K. L. (2013). Moisture sorption characteristics and modeling of energy sorghum (Sorghum bicolor (L) Moench). Journal of Stored Products Research, 52, 128-136. https://doi.org/10.1016/j.jspr.2012.11.002
Bustos-Vanegas, J. D., Corrêa, P. C., Zeymer, J. S., Baptestini, F. M., & Campos, R. C. (2018). Moisture sorption isotherms of quinoa seeds: Thermodynamic analysis. Engenharia Agrícola, 38(6), 941-950. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n6p941-950/2018
Campos, R. C., Corrêa, P. C., Zaidan, I. R., Zaidan, U. R., & Leite, R. A. (2019). Moisture sorption isotherms of sunflower seeds: Thermodynamic analysis. Ciencia & Agrotecnologia, 43, 1-12. https://doi.org/10.1590/1413-7054201943011619
Corrêa, P. C., Oliveira, G. H. H., Botelho, F. M., Goneli, A. L. D., & Carvalho, F. M. (2010). Modelagem matemática e determinação das propriedades termodinâmicas do café (Coffea arabica L.) durante o processo de secagem. Revista Ceres, 57(5), 595-601. https://doi.org/10.1590/S0034-737X2010000500005
Corrêa, P. C., Baptestini, F. M., Vanegas, J. D. B., Leite, R., Botelho, F. M., & Oliveira, G. H. H. (2017). Kinetics of water sorption of damaged bean grains: Thermodynamic properties. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(8), 556-561. https://doi.org/10.1590/1807-1929/agriambi.v21n8p556-561
Goneli, A. L. D., Corrêa, P. C., Oliveira, G. H. H., Oliveira, A. P. L. R., & Orlando, R. C. (2016). Moisture sorption isotherms of castor beans. Part 2: Thermodynamic properties. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(8), 757-762. https://doi.org/10.1590/1807-1929/agriambi.v20n8p757-762
Hassini, L., Bettaieb, E., Desmorieux, H., Torres, S. S., & Touil, A. (2015). Desorption isotherms and thermodynamic properties of prickly pear seeds. Industrial Crops and Products, 67, 457-465. https://doi.org/10.1016/j.indcrop.2015.01.078
Koua, B. K., Koffi, P. M. E., Gbaha, P., & Toure, S. (2014). Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta). Journal of Food Science and Technology, 51, 1711-1723. https://doi.org/10.1007/s13197-012-0687-y
Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976a). Enthalpy-entropy compensation. 1 - Some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. Journal of Physical Chemistry, 80(21), 2335-2341. https://doi.org/10.1021/j100562a006
Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976b). Enthalpy-entropy compensation. 2 - Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341-2351. https://doi.org/10.1021/j100562a007
Lago, C. C., Liendo-Cárdenas, M., & Noreña, C. P. Z. (2013). Thermodynamic sorption properties of potato and sweet potato flakes. Food and Bioproducts Processing, 91(4), 389-395. https://doi.org/10.1016/j.fbp.2013.02.005
Leffler, J. E. (1955). The enthalpy-entropy relationship and its implications for organic chemistry. The Journal of Organic Chemistry, 20(9), 1202-1231. https://doi.org/10.1021/jo01126a009
Montanuci, F. D., Jorge, L. M. M., & Jorge, R. M. M. (2013). Kinetic, thermodynamic properties, and optimization of barley hydration. Food Science and Technology, 33(4), 690-698. https://doi.org/10.1590/S0101-20612013000400014
Naveen Kumar, M., & Das, S. K. (2015). Moisture sorption isotherms of preconditioned pressure parboiled brown rice. Journal of Food Processing & Technology, 6(12), 1-9. https://doi.org/10.4172/2157-7110.1000519
Resende, O., Oliveira, D. E. C., Costa, L. M., & Ferreira Júnior, W. N. (2017). Thermodynamic properties of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 37(4), 739-749. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p739-749/2017
Rosa, D. P., Villa-Vélez, H. A., & Telis-Romero, J. (2013). Study of the enthalpy-entropy mechanism from water sorption of orange seeds (C. sinensis cv. Brazilian) for the use of agro-industrial residues as a possible source of vegetable oil production. Food Science and Technology, 33(suppl. 1), 95-101. https://doi.org/10.1590/S0101-20612013000500015
Silva, D. A., & Pena, R. S. (2018). Thermodynamic properties of Buriti (Mauritia flexuosa) tree gum. Food Science and Technology, 38(3), 390-398. https://doi.org/10.1590/fst.02917
Silva, H. W., Rodovalho, R. S., & Silva, I. L. (2018). Hysteresis and thermodynamic properties of water sorption of ‘MalagXeta’ pepper seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(9), 658-663. https://doi.org/10.1590/1807-1929/agriambi.v22n9p658-663
Simón, C., Esteban, L. G., Palacios, P., Fernández, F. G., & García-Iruela, A. (2016). Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum.), radiate pine (Pinus radiate D. Don) and chestnut (Castanea sativa Mill.). Industrial Crops and Products, 94, 122-131. https://doi.org/10.1016/j.indcrop.2016.08.008
Slavutsky, A. M., & Bertuzzi, M. A. (2015). Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum. Applied Clay Science, 108, 144-148. https://doi.org/10.1016/j.clay.2015.02.011
Sousa, K. A., Resende, O., Goneli, A. L. D., Smaniotto, T. A. S., & Oliveira, D. E. C. (2015). Thermodynamic properties of water desorption of forage turnip seeds. Acta Scientiarum. Agronomy, 37(1), 11-19. https://doi.org/10.4025/actasciagron.v37i1.19333
Souza, S. J. F., Alves, A. I., Vieira, E. N. R., Vieira, J. A. G., Ramos, A. M., & Telis-Romero, J. (2015). Study of thermodynamic water properties and moisture sorption hysteresis of mango skin. Food Science and Technology, 35(1), 157-166. https://doi.org/10.1590/1678-457X.6557
Spada, J. C., Noreña, C. P. A., Marczak, L. D. F., & Tessaro, I. C. (2013). Water adsorption isotherms of microcapsules with hydrolyzed pinhão (Araucaria angustifolia seeds) starch as wall material. Journal of Food Engineering, 114(1), 64-69. https://doi.org/10.1016/j.jfoodeng.2012.07.019
Teixeira, L. P., Andrade, E. T., & Devilla, I. A. (2018). Isosteric heat, entropy and gibbs free energy of pumpkin seeds (Cucurbita moschata). Engenharia Agrícola, 38(1), 97-102. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p97-102/2018
Velázquez-Gutiérrez, S. K., Figueira, A. C., Rodríguez-Huezo, M. E., Román-Guerrero, A., Carrillo-Navas, H., & Pérez-Alonso, C. (2015). Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.). Carbohydrate Polymers, 121, 411-419. https://doi.org/10.1016/j.carbpol.2014.11.068
Zeymer, J. S., Correa, P. C., Oliveira, G. H. H., Araújo, M. E. V., Guzzo, F., & Baptestini, F. M. (2022). Moisture sorption isotherms and hysteresis of soybean grains. Acta Scientiarum. Agronomy, 45(1), 1-11. https://doi.org/10.4025/actasciagron.v45i1.56615
Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H., & Baptestini, F. M. (2018a). Thermodynamic properties of water desorption in lettuce seeds. Semina: Ciências Agrárias, 39(3), 921-932. https://doi.org/10.5433/1679-0359.2018v39n3p921
Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H., Baptestini, F. M., & Faria, I. L. (2018b). Thermodynamic properties of sorption of rice in the husk. Engenharia Agrícola, 38(3), 369-375. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n3p369-375/2018
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.