Selection of differentiated maturity genotypes of Coffea canephora
Resumo
The aim of this study was to select Coffea canephora genotypes from the seminal propagation variety ‘ES8152’ with different harvest times. The experiment was conducted using a Federer augmented block design with three repetitions, evaluating 175 genotypes and four clonal witnesses in two harvests (2022 and 2023), and 20 morphoagronomic characteristics were evaluated. The data were analyzed using the REML/BLUP methodology with the Selegen software, where the variance components and genetic values were estimated. The selection was performed using the Mulamba-Rank index. The bottom sieve (BS) and top sieve (TS) characteristics had high heritability (0.5779 and 0.6694, respectively) and accuracy (0.7602 and 0.8182, respectively). TS also showed high repeatability (0.6827). The genotypic effects were significant at 1% level for days for fruit ripening, fruit size, vegetative vigor, yield per plant, TS, and BS; at 5% level for general scale; and at 10% level for incidence of rust, degree of inclination, and percentage of fruit float. It was possible to distinguish 20 superior genotypes in terms of maturation, among which the selection gains for the genotypic clusters were 46.14, 45.92 and 41.56% for indefinite, early, and late maturation, respectively, by applying a selection intensity of 11.43%. Genotypes 25, 26, 73, 93, and 100 could be used for early maturing varieties, whereas genotypes 155 and 189 could be used for late-maturing varieties. The most promising genotypes for composing a variety, regardless of the maturation period, were 20, 39, 90, 112, and 190, as these were among the five best genotypes ranked in the three selection processes, demonstrating that they added superior desired morphoagronomic characteristics. It is concluded that there is genetic variability among the 175 genotypes evaluated, as well as significant genetic effects to be explored in the pool gene of individuals originating from the 'ES8152' variety.
Downloads
Referências
Akpertey, A., Anim-Kwapong, E., Adu-Gyamfi, P. K. K., & Ofori, A. (2022). Genetic variability for vigor and yield of robusta coffee (Coffea canephora) clones in Ghana. Heliyon, 8(8), 1-10. https://doi.org/10.1016/j.heliyon.2022.e10192
Alkimim, E. R., Caixeta, E. T., Sousa, T. V., Gois, I. B., Lopes da Silva, F. L., Sakiyama, N. S., Zambolim, L., Alves, R. S., & Resende, M. D. V. (2021). Designing the best breeding strategy for Coffea canephora: genetic evaluation of pure and hybrid individuals aiming to select for productivity and disease resistance traits. PLoS ONE, 16(12), 1-17. https://doi.org/10.1371/journal.pone.0260997
Campuzano-Duque, L. F., & Blair, M. W. (2022). Strategies for robusta coffee (Coffea canephora) improvement as a new crop in Colombia. Agriculture, 12(10), 1-15. https://doi.org/10.3390/agriculture12101576
Carias, C. M. O. M., Gravina, G. A., Ferrão, M. A. G., Fonseca, A. F. A., Ferrão, R. G., Vivas, M., & Viana, A. P. (2016). Predição de ganhos genéticos via modelos mistos em progênies de café conilon. Coffee Science, 11(1), 39-45
Carvalho, H. F., Silva, F. L. D., Resende, M. D. V. D., & Bhering, L. L. (2019). Selection and genetic parameters for interpopulation hybrids between kouilou and robusta coffee. Bragantia, 78(1), 52-59. https://doi.org/10.1590/1678-4499.2018124
Companhia Nacional de Abastecimento [CONAB]. (2023). Acompanhamento da safra brasileira de café (v. 10, n. 3, terceiro levantamento). Conab.
Davis, A. P., & Rakotonasolo, F. (2021). Six new species of coffee (Coffea) from northern Madagascar. Kew Bulletin, 76(3), 497-511. https://doi.org/10.1007/S12225-021-09952-5
Dubberstein, D., Partelli, F. L., Guilhen, J. H. S., Rodrigues, W. P., Ramalho, J. C., & Ribeiro-Barros, A. I. (2020). Research Article Biometric traits as a tool for the identification and breeding of Coffea canephora genotypes. Genetics and Molecular Research, 19(2), 1-17. https://doi.org/10.4238/gmr18541
Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60(1), 54-69. https://doi.org/10.1111/j.1365-3059.2010.02402.x
Federer, W. T. (1956). Augmented (or hoonuiaku) designs. Hawaiian Planters’ Record, 55(2), 191-208.
Ferrão, R. G., Fonseca, A. F. A., Ferrão, M. A. G., & Muner, L. H. (2019). Café conilon (3. ed.). Incaper.
Ferrão, M. A. G., Fonseca, A. F. A., Volpi, P. S., Souza, L. C., Comério, M., Verdin Filho, A. C., Riva-Souza, E. M., Munoz, P. R., Ferrão, R. G., & Ferrão, L. F. V. (2024). Genomic-assisted breeding for climate-smart coffee. The Plant Genome, 17(1), 1-19. https://doi.org/10.1002/tpg2.20321
Guerreiro Filho, O., Silvarolla, M., Carvalho, C., & Fazuoli, L. (2008). Características utilizadas para a identificação de cultivares de café. In C. H. S. Carvalho (Ed.), Cultivares de café origem, características e recomendações (pp. 141-155). Embrapa Café.
Mistro, J. C., Resende, M. D. V. D., Fazuoli, L. C., & Vencovsky, R. (2019). Effective population size and genetic gain expected in a population of Coffea canephora. Crop Breeding and Applied Biotechnology, 19(1), 1-7. https://doi.org/10.1590/1984-70332019v19n1a01
Moraes, M. S., Teixeira, A. L., Ramalho, A. R., Espíndula, M. C., Ferrão, M. A. G., & Rocha, R. B. (2018). Research Article Characterization of gametophytic self-incompatibility of superior clones of Coffea canephora. Genetics and Molecular Research, 17(1), 1-11. https://doi.org/10.4238/gmr16039876
Moreira, P. C., Rezende Abrahão, J. C., Porto, A. C. M., Nadaleti, D. H. S., Gonçalves, F. M. A., Carvalho, G. R., & Botelho, C. E. (2022). Progeny selection to develop a sustainable arabica coffee cultivar. Agronomy, 12(5), 1-12. https://doi.org/10.3390/agronomy12051144
Moura, W. M., Pedrosa, A. W., Oliveira, R. L., Cecon, P. R., Ferrão, R. G., Ferrão, M. A. G., & Verdin Filho, A. C. (2022). Selection of Conilon coffee clones for the Zona da Mata region of Minas Gerais, Brazil. Coffee Science, 17, e171995. https://doi.org/10.25186/.v17i.1995
Prezotti, L. C., Oliveira, J. A., Gomes, J. A., & Dadalto, G. G. (2007). Manual de recomendação de calagem e adubação para o Estado do Espírito Santo: 5ª aproximação. Incaper.
Ramalho, A. R., Rocha, R. B., Souza, F. F., Veneziano, W., & Teixeira, A. L. (2016). Progresso genético da produtividade de café beneficiado com a seleção de clones de cafeeiro Conilon. Revista Ciência Agronômica, 47(3), 516-523. https://doi.org/10.5935/1806-6690.20160062
Resende, M. D. V. (2007). Software SELEGEN-REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Embrapa Florestas.
Resende, M. D. V., & Alves, R. S. (2020). Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. Functional Plant Breeding Journal, 2(2), 1-31. https://doi.org/10.35418/2526-4117/v2n2a1
Santin, M. R., Coelho, M. C., Sayd, R. M., Peixoto, J. R., & Amabile, R. F. (2019). Yield, maturation cycle, and estimates of genetic parameters of robusta coffee genotypes under irrigation in the Cerrado. Crop Breeding and Applied Biotechnology, 19(4), 387-394. http://dx.doi.org/10.1590/1984-70332019v19n4a55
Senra, J. F. B., Silva, J. A., Ferrão, M. A. G., Degli Esposti, M. D., Milheiros, I. S., & Fassarella, K. M. (2022). Genetic variability of conilon coffee population from cultivar ‘ES8152’ based on morphoagronomic variables. Coffee Science, 17, 1-9. https://doi.org/10.25186/.v17i.1986
Silva, J. A., Senra, J. F. B., Esposti, M. D. D., Milheiros, I. S., Silva, U. R., Conceição, A. O., & Zacarias, A. J. (2022). Caracterização do vigor vegetativo, leituras SPAD e índice de vegetação em população de Coffea canephora. Research, Society and Development, 11(15), 1-13. http://dx.doi.org/10.33448/rsd-v11i15.37314
Tran, H. T. M., Vargas, C. A. C., Slade Lee, L., Furtado, A., Smyth, H., & Henry, R. (2017). Variation in bean morphology and biochemical composition measured in different genetic groups of arabica coffee (Coffea arabica L.). Tree Genetics and Genomes, 13(3), 1-14. https://doi.org/10.1007/s11295-017-1138-8
Waller, J. M. (1982). Coffee rust-epidemiology and control. Crop Protection, 1(4), 385-404. https://doi.org/10.1016/0261-2194(82)90022-9
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.