Alternatives for simulating and modeling simplified insect feeding eletropenetrography discrete data
Resumo
The study of insect feeding behavior using electropenetrography (EPG) typically involves analyzing complex data. EPG data comprises a temporal sequence of behaviors summarized using a collection of counts, durations, and sequential variables. These variables can be counts, means, percentages, or linear combinations of behaviors. This results in numerous variables being correlated to a certain degree. Consequently, statistical analysis is rendered complex, particularly in terms of model fitting and selection. This study proposed a statistical approach to simulate overdispersed correlated count data based on a previous comparative experiment to monitor the feeding behavior of untreated Euschistus heros versus E. heros treated with an entomopathogen. The waveforms included non-feeding (Z), pathway (Eh1), laceration/maceration of endosperm tissue (Eh3a), short ingestion events of lacerated/macerated endosperm tissue (Eh3b), xylem sap ingestion (Eh2), and ingestion from an unknown location (Eh4). Simulated scenarios involved the creation of differences between groups of insects based on the total number of events or the proportion of events of Z. Several statistical models were then fitted to the simulated data and evaluated based on goodness-of-fit, type-I error rate, and power analysis. The multinomial model exhibited the lowest type-I error rate and was more sensitive in detecting higher (>1.35x) differences between groups. Only the multinomial model achieved a power greater than 0.8. Conversely, models such as the Poisson and normal models exhibited limitations such as inflated type-I error rates in the presence of overdispersion. Among the univariate models, the mixed model exhibited the best fit.
Downloads
Referências
Antúnez, C. C. C., Liano, A. T. G., & Parra, M. A. R. (2022). Distribución espacial de Euschistus heros (Hemiptera: Pentatomidae) en cultivos de soja (Glycine max (L.) Merril) en los departamentos de San Pedro e Itapúa. Revista Científica de la UCSA, 9(2), 77-85. https://doi.org/10.18004/ucsa/2409-8752/2022.009.02.077
Avci, E., Alturk, S., & Soylu, E. S. (2015). Comparison count regression models for overdispersed alga data. Libras, 25(1), 1-5.
Backus, E. A., Cline, A. R., Ellerseick, M. R., & Serrano, M. S. (2007). Lygus hesperus (Hemiptera: Miridae) feeding on cotton: New methods and parameters for analysis of nonsequential electrical penetration graph data. Annals of the Entomological Society of America, 100(2), 296-310. https://doi.org/10.1603/0013-8746(2007)100[296:LHHMFO]2.0.CO;2
Backus, E. A., Cervantes, F. A., Guedes, R. N. C., Li, A. Y., & Wayadande, A. C. (2019). AC-DC electropenetrography for in-depth studies of feeding and oviposition behaviors. Annals of the Entomological Society of America, 112(3), 236-248. https://doi.org/10.1093/aesa/saz009
Backus, E. A., & Shih, H.-T. (2020). Review of the EPG waveforms of sharpshooters and spittlebugs including their biological meanings in relation to transmission of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae). Journal of Insect Science, 20(4), 1-14. https://doi.org/10.1093/jisesa/ieaa055
Coly, S., Yao, A.-F., Abriald, D., & Charras-Garrido, M. (2016). Distributions to model overdispersed count data. Journal de la Société Française de Statistique, 157(2), 39-63.
Dixon, P. (2016). Should blocks be fixed or random? In Conference on Applied Statistics in Agriculture Proceedings (pp. 23-39). New Prairie Press. https://doi.org/10.4148/2475-7772.1474
Ebert, T. A., Backus, E. A., & Rogers, M. E. (2018). Handling artificially terminated events in electropenetrography data. Journal of Economic Entomology, 111(4), 1987-1990. https://doi.org/10.1093/jee/toy117
Ebert, T. A., Backus, E. A., Cid, M., Fereres, A., & Rogers, M. E. (2015). A new SAS program for behavioral analysis of electrical penetration graph data. Computers and Electronics in Agriculture, 116, 80-87. https://doi.org/10.1016/j.compag.2015.06.011
El-habil, A. M. (2012). An application on multinomial logistic regression model. Pakistan Journal of Statistics and Operation Research, 8(2), 271-291. https://doi.org/10.18187/pjsor.v8i2.234
Freitas, S. M., & Duarte, C. G. (2023). Uso das distribuições Poisson, Poisson-Gama, Poisson-Inversa Gaussiana e Poisson-Lindley generalizada para dados de contagem. Sigmae, 12(1), 172-189.
Giesselmann, M., & Schmidt‐Catran, A. W. (2020). Interactions in fixed effects regression models. Sociological Methods & Research, 51(3), 1000-1127. https://doi.org/ 10.1177/0049124120914934
Giordanengo, P. (2014). EPG-Calc: a PHP-based script to calculate electrical penetration graph (EPG) parameters. Arthropod-Plant Interactions, 8, 163-169. https://doi.org/10.1007/s11829-014-9298-z
Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Applications to poisson models. Econometrica, 52(3), 701-720. https://doi.org/ 10.2307/191347
Greenwood, M., & Yule, G. U. (1920). An inquiry into the nature of frequency distributions of multiple happenings, with particular reference to the occurrence of multiple attacks of disease or repeated accidents. Journal of the Royal Statistical Society. A, 83(2), 255–279. https://doi.org/10.2307/2341080
Guedes, R. N. C., Cervantes, F. A., Backus, E. A., & Walse, S. S. (2018). Substrate‑mediated feeding and egg‑laying by spotted wing Drosophila: Waveform recognition and quantification via electropenetrography. Journal of Pest Science, 92, 495-507. https://doi.org/10.1007/s10340-018-1065-y
Harrison, X. A. (2014). Using observation‐level random effects to model overdispersion in count data in ecology and evolution. PeerJ, 2, 1-19. https://doi.org/10.7717/peerj.616
Hausman, J., Hall, B. H., & Griliches, Z. (1984). Econometric models for count data with an application to the patents-R & D relationship. Econometrica, 52(4), 909-938. https://doi.org/10.2307/1911191
Hinde, J, & Demétrio, C. G. B. (1998). Overdispersion: Models and estimation. Computational Statistics & Data Analysis, 27(2), 151-170. https://doi.org/10.1016/S0167-9473(98)00007-3
Holla, M. (1967). On a Poisson-inverse Gaussian distribution. Metrika, 11, 115-121. https://doi.org/10.1007/BF02613581
Hu, J., Yang, J. J., Liu, B. M., Cui, H. Y., Zhang, Y. J., & Jiao, X. G. (2020). The feeding behavior explains the different effects of cabbage on MEAM1 and MED cryptic species of Bemisia tabaci. Insect Science, 27(6), 1276-1284. https://doi.org/10.1111/1744-7917.12739
Krithikadatta, J. (2014). Normal distribution. Journal of Conservative Dentistry, 17(1), 96-97. https://doi.org/10.4103/0972-0707.124171
Lucini, T., & Panizzi, A. (2018). Electropenetrography monitoring of the neotropical brown-sink bug (Hemiptera: Pentatomidae) on soybean pods: An electrical penetration graph-histology analysis. Journal of Insect Science, 18(6), 1-14. https://doi.org/10.1093/jisesa/iey108
Lucini T., & Panizzi, A. (2017). Electropenetrography (EPG): a breakthrough tool unveiling stink bug (Pentatomidae) feeding on plants. Neotropical Entomology, 47(1), 6-18. https://doi.org/10.1007/s13744-017-0574-3
Mclean, D. L., & Kinsey, M. G. (1964). A technique for electronically recording aphid feeding and salivation. Nature, 202, 1358-1359. https://doi.org/10.1038/2021358a0
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme
Putri, G., Nurrohmah, S., & Fithriani, I. (2020). Comparing Poisson-inverse gaussian model and negative binomial model on case study: Horseshoe crabs data. Journal of Physics: Conference Series, 1442, 1-6. https://doi.org/10.1088/1742-6596/1442/1/012028
R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project. org
Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Applied Statistics, 54(3), 507-554. https://doi.org/10.1111/j.1467-9876.2005.00510.x
Almeida, A. C. d. S., Rodrigues, M. A., Boaventura, H. A., Vieira, A. S., e Silva, J. F. A., de Jesus, F. G., & Quintela, E. D. (2025). Can Metarhizium anisopliae reduce the feeding of the Neotropical brown stink bug, Euschistus heros (Fabricius, 1798), and its damage to soybean seeds? Journal of Fungi, 11(4), 247. https://doi.org/10.3390/jof11040247
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Springer Netherlands.
Sarria, E., Cid, M., Garzo, E., & Fereres, A. (2009). Excel Workbook for automatic parameter calculation of EPG data. Computers and Electronics in Agriculture, 67(1-2), 35-42. https://doi.org/10.1016/j.compag.2009.02.006
Schmidt, A. M., Freitas, L. P., Cruz, O. G., & Carvalho, M. S. (2022). A Poisson-multinomial spatial model for simultaneous outbreaks with application to arboviral diseases. Statistical Methods in Medical Research, 31(8), 1590-1602. https://doi.org/10.1177/09622802221102628
Silva, A. R., Almeida, A. C. S., Gonçalves de Jesus, F., Barrigossi, J. A. F. (2022). Infest: Insect feeding behavior statistics. INPI - Instituto Nacional da Propriedade Industrial [BR512022001098-4]. https://arsilva.shinyapps.io/infest
Silva, E. M., Furtado, T. D. R., Fernandes, J. G., Cirilo, M. A., & Muniz, J. A. (2019). Leaf count overdispersion in coffee seedlings. Ciência Rural, 49(4), 1-7. https://doi.org/10.1590/0103-8478cr20180786
Sosa-Gómez, D. R., Corrêa-Ferreira, B. S., Kraemer, B., Pasini, A., Husch, P. E., Vieira, C. E. D., Martinez, C. B. R., & Lopes, I. O. N. (2020). Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agricultural and Forest Entomology, 22(2), 99-118. https://doi.org/10.1111/afe.12366
Tariq, K., Noor, M., Backus, E. A., Hussain, A., Ali, A., Peng, W., & Zhang, H. (2017). The toxicity of flonicamid to cotton leafhopper, Amrasca biguttula (Ishida) is by disruption of ingestion: An EPG study. Pest Management Science, 73(8), 1661-1669. https://doi.org/10.1002/ps.4508
Terza, J. V., & Wilson, P. W. (1990). Analyzing frequencies of several types of events: A mixed multinomial-Poisson approach. The Review of Economics and Statistics, 72(1), 108-115.
Tyralis, H., & Papacharalampous, G. (2024). A review of predictive uncertainty estimation with machine learning. Artificial Intelligence Review, 57, 94. https://doi.org/10.1007/s10462-023-10698-8.
Venables, W. N. & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
Wayadande, A. C., Backus, E. A., Noden, B. H., & Ebert, T. (2020). Waveforms from stylet probing of the mosquito Aedes aegypti (Diptera: Culicidae) measured by AC-DC electropenetrography. Journal of Medical Entomology, 57(2), 353-368. https://doi.org/10.1093/jme/tjz188
Wolodzko, T. (2020). extraDistr: Additional univariate and multivariate distributions. R package version 1.9.1. https://cran.r-project.org/web/packages/extraDistr/index.html.
Ying, L., Baiming, L., Hongran, L., Tianbo, D., Yunli, T., & Dong, C. (2021). Effect of Cardinium infection on the probing behavior of Bemisia tabaci (Hemiptera: Aleyrodidae) MED. Journal of Insect Science, 21(3), 1-6. https://doi.org/10.1093/jisesa/ieab040
Copyright (c) 2025 Guilherme Pereira de Oliveira, Frederico Antonio Loureiro Soares , André Cirilo de Sousa Almeida , Gustavo da Silva Leite , Timothy Aaron Ebert, Anderson Rodrigo da Silva (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.