Long-term successive poultry litter application improves Oxisol fertility in the Brazilian Cerrado

Resumo

Brazilian Savannah (Cerrado) soils have insufficient nutrient concentrations for attaining high crop yields. Properly applied poultry litter (PL) may improve soil fertility and forage productivity. Herein, we aimed to evaluate the vertical distribution of acidity and nutrient availability in an Oxisol (Latossolo Vermelho distroférrico) subjected to increasing PL doses over 7 years. We determined the vertical distribution and levels of total organic C, total N, Ca, Mg, K, P, and pH in seven soil layers (0–0.05, 0.05–0.10, 0.10–0.20, 0.20–0.30, 0.30–0.50, 0.50–0.75, and 0.75–1.00 m) where four different PL treatments were applied (cumulative levels: 0, 26.32, 43.15, and 57.6 Mg ha−1) over seven years. Potential acidity and low total organic C content indicated the chemical limitations of natural soil. The application of PL reduced soil acidity and increased K, Ca, and Mg levels and base saturation to 1.00-m depth. The highest PL dose (57.6 Mg ha−1) increased the vertical mobility of Ca, K, and Mg while increasing their stocks by 157, 140, and 135%, respectively, in the deeper soil layers. However, even in the long term, the tested PL doses did not increase total organic C, total N, or P levels in the subsurface soil layers. The dual effects of soil acidity correction and improved nutrient content attest to PL application as an effective strategy for improving soil fertility and ensuring sustainable agricultural development in the Brazilian Cerrado.

Downloads

Não há dados estatísticos.

Referências

Adámoli, J., Macedo, J., Azevedo, L. G., & Madeira Netto, J. (1986). Caracterização da região dos Cerrados. In W. J. Goedert (Ed.), Solos dos Cerrados: tecnologias e estratégias de manejo. Embrapa-CPAC.

Alleoni, L. R. F., Cambri, M. A., & Caires, E. F. (2005). Atributos químicos de um Latossolo de cerrado sob plantio direto, de acordo com doses e formas de aplicação de calcário. Revista Brasileira de Ciência do Solo, 29(6), 923-934. https://doi.org/10.1590/S0100-06832005000600010

Al-Gaadi, K. A., Madugundu, R., & Tola, E. (2019). Investigating the response of soil and vegetable crops to poultry and cow manure using ground and satellite data. Saudi Journal of Biological Sciences, 26(7), 1392-1399. https://doi.org/10.1016/j.sjbs.2019.06.006

Azevedo, R. P., Salcedo, I. H., Lima, P. A., Silva Fraga, V., & Lana, R. M. Q. (2018). Mobility of phosphorus from organic and inorganic source materials in a sandy soil. International Journal of Recycling of Organic Waste in Agriculture, 7(2), 153-163. https://doi.org/10.1007/s40093-018-0201-2

Ceretta, C. A., Girotto, E., Lourenzi, C. R., Trentin, G., Vieira, R. C. B., & Brunetto, G. (2010). Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agriculture, Ecosystems & Environment, 139(4), 689-699. https://doi.org/10.1016/j.agee.2010.10.016

Chakraborty, D., Prasad, R., Bhatta, A., & Torbert, H. A. (2021). Understanding the environmental impact of phosphorus in acidic soils receiving repeated poultry litter applications. Science of the Total Environment, 779, 1-11. https://doi.org/10.1016/j.scitotenv.2021.146267

Chojnacka, K., Moustakas, K., & Witek-Krowiak, A. (2020). Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology, 295, 1-11. https://doi.org/10.1016/j.biortech.2019.122223

Companhia Nacional de Abastecimento [CONAB]. (2020). Perspectivas para a agropecuária – Volume 7 – Safra 2019/2020. Conab. https://www.conab.gov.br/perspectivas-para-a-agropecuaria

Costa, A. M., Ribeiro, B. T., Silva, A. A., & Borges, E. N. (2008). Aggregate stability of a Red Latosol amended with turkey litter. Ciência e Agrotecnologia, 32(1), 73-79. https://doi.org/10.1590/S1413-70542008000100011

Davi, J. E., Nogueira, B. K., Gasques, L. R., Dalla Côrt, A. S., Camargo, T. A., Pacheco, L. P., Silva, S. L., & Souza, E. D. (2022). Diversified production systems in sandy soils of the Brazilian Cerrado: Nutrient dynamics and soybean productivity. Journal of Plant Nutrition, 46(8), 1650-1667. https://doi.org/10.1080/01904167.2022.2093744

Dróżdż, D., Wystalska, K., Malińska, K., Grosser, A., Grobelak, A., & Kacprzak, M. (2020). Management of poultry manure in Poland–Current state and future perspectives. Journal of Environmental Management, 264, 1-16. https://doi.org/10.1016/j.jenvman.2020.110327

Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75(4), 529-538. https://doi.org/10.4141/cjss95-075

Ernani, P. R., Bayer, C., Almeida, J. A., & Cassol, P. C. (2007). Vertical mobility of cations as influenced by the method of potassium chloride application to variable charge soils. Revista Brasileira de Ciência do Solo, 31(2), 393-401. https://doi.org/10.1590/S0100-06832007000200022

Ferraz-Almeida, R. (2024). Balance of nitrate and ammonium in tropical soil conditions: Soil factors analyzed by machine learning. Nitrogen, 5(3), 732-745. https://doi.org/10.3390/nitrogen5030048

Ferreira, A. C. B., Borin, A. L. D. C., Lamas, F. M., Bogiani, J. C., Silva, M. A. S., Silva Filho, J. L., & Staut, L. A. (2019). Soil carbon accumulation in cotton production systems in the Brazilian Cerrado. Acta Scientiarum. Agronomy, 42(1), 1-8. https://doi.org/10.4025/actasciagron. v42i1.43039

Fink, J. R., Inda, A. V., Tiecher, T., & Barrón, V. (2016). Iron oxides and organic matter on soil phosphorus availability. Ciência e Agrotecnologia, 40(4), 369-379. https://doi.org/10.1590/1413-70542016404023016

Gmach, M. R., Kaiser, K., Cherubin, M. R., Cerri, C. E. P., Lisboa, I. P., Vasconcelos, A. L. S., & Siqueira‐Neto, M. (2021). Soil dissolved organic carbon responses to sugarcane straw removal. Soil Use and Management, 37(1), 126-137. https://doi.org/10.1111/sum.12663

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2009). Análise multivariada de dados (5. ed.). Bookman.

Hentz, P., Corrêa, J. C., Fontaneli, R. S., Rebelatto, A., Nicoloso, R. S., & Semmelmann, C. E. N. (2016). Poultry litter and pig slurry applications in an integrated crop-livestock system. Revista Brasileira de Ciência do Solo, 40, 1-12. https://doi.org/10.1590/18069657rbcs20150072

Jeffers, J. N. R. (1978). An introduction to system analysis: with ecological applications. Edward Arnold.

Joardar, J.C., Mondal, B. & Sikder, S. (2020). Comparative study of poultry litter and poultry litter biochar application in the soil for plant growth. SN Applied Sciences, 2(1770), 1-9. https://doi.org/10.1007/s42452-020-03596-z

Kiss, N. É., Tamás, J., Mannheim, V., & Nagy, A. (2023). Comparing the environmental impact of poultry manure and chemical fertilizers. Frontiers in Built Environment, 9, 1-8. https://doi.org/10.3389/fbuil.2023.1237476

Kobierski, M., Bartkowiak, A., Lemanowicz, J., & Piekarczyk, M. (2017). Impact of poultry manure fertilization on chemical and biochemical properties of soils. Plant, Soil and Environment, 63(12), 558-563. https://doi.org/10.17221/668/2017-PSE

Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International Journal of Environmental Research and Public Health, 16(19), 1-23. https://doi.org/10.3390/ijerph16193521

Laroca, J. V. S., Souza, J. M. A., Pires, G. C., Pires, G. J. C., Pacheco, L. P., Silva, F. D., Wruck, F. J., Carneiro, M. A. C., Silva, L. S., & Souza, E. D. (2018). Soil quality and soybean productivity in crop-livestock integrated system in no-tillage. Pesquisa Agropecuária Brasileira, 53(11), 1248-258. https://doi.org/10.1590/s0100-204x2018001100007

Liang, X., Yuan, J., Yang, E., & Meng, J. (2017). Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. European Journal of Soil Biology, 82, 50-55. https://doi.org/10.1016/j.ejsobi.2017.08.005

Lima, A. V., Costa, D. P., Simões, L. R., Barros, J. A., Silva, V. P., Lima, J. R. S., Hammecker, C., & Medeiros, E. V. (2024). Revitalizing fertility of global soils: Meta-analysis on benefits of poultry litter biochar on soil health. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(12), 1-10. https://doi.org/10.1590/1807-1929/agriambi.v28n12e278204

Maikol, N., Haruna, A. O., Maru, A., Asap, A., & Medin, S. (2021). Utilization of urea and chicken litter biochar to improve rice production. Scientific Reports, 11(9955), 1-20. https://doi.org/10.1038/s41598-021-89332-y

Maillard, É., & Angers, D. A. (2014). Animal manure application and soil organic carbon stocks: A meta‐analysis. Global Change Biology, 20(2), 666-679. https://doi.org/10.1111/gcb.12438

Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press.

Masud, M. M., Abdulaha-Al Baquy, M., Akhter, S., Sen, R., Barman, A., & Khatun, M. R. (2020). Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicology and Environmental Safety, 202, 110865. https://doi.org/10.1016/j.ecoenv.2020.110865

Mees, J. B. R., Gomes, S. D., Vilas Boas, M. A., Gomes, B. M., & Passig, F. H. (2011). Kinetic behavior of nitrification in the post-treatment of poultry wastewater in a sequential batch reactor. Engenharia Agrícola, 31(5), 954-964. https://doi.org/10.1590/S0100-69162011000500013

Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Pantano, G., Grosseli, G. M., Mozeto, A. A., & Fadini, P. S. (2016). Sustainability in phosphorus use: a question of water and food security. Química Nova, 39(6), 732-740. https://doi.org/10.5935/0100-4042.20160086

Pinheiro, D. P., Melo, N. C. & Fernandes, C. (2021). Soil quality indicators in an Ultisol subjected to chiseling in a sugarcane crop under mechanized management in Southeastern Brazil. Sugar Tech, 23, 1064-1074. https://doi.org/10.1007/s12355-021-01001-6

Pinto, F. A., Santos, F. L., Terra, F. D., Ribeiro, D. O., Sousa, R. R. J., Souza, E. D., Carneiro, M. A. C., & Paulino, H. B. (2012). Properties of soil under rotational grazing system submitted to turkey litter application. Pesquisa Agropecuária Tropical, 42(3), 254-262. https://doi.org/10.1590/S1983-40632012000300002

Poggere, G. C., Barrón, V., Inda, A. V., Barbosa, J. Z., Brito, A. D. B., & Curi, N. (2020). Linking phosphorus sorption and magnetic susceptibility in clays and tropical soils. Soil Research, 58(5), 430-440. https://doi.org/10.1071/SR20099

Prietzel, J., Klysubun, W., & Hurtarte, L. C. C. (2021). The fate of calcium in temperate forest soils: a Ca K-edge XANES study. Biogeochemistry, 152(2), 195-222. https://doi.org/10.1007/s10533-020-00748-6

Rawal, A., Lankau, R. A., & Ruark, M. D. (2024). How does soil organic matter affect potato productivity on sandy soil? Soil Science Society of America Journal, 88, 1748–1766. https://doi.org/10.1002/saj2.20718

Rogeri, D. A., Ernani, P. R., Mantovani, A., & Lourenço, K. S. (2016). Composition of poultry litter in Southern Brazil. Revista Brasileira de Ciência do Solo, 40, 1-7. https://doi.org/10.1590/18069657rbcs20140697

Sadeghian-Khalajabadi, S., & Díaz-Marín, C. (2020). Corrección de la acidez del suelo: efectos en el crecimiento inicial del café. Revista Cenicafé, 71(1), 21-31. https://doi.org/10.38141/10778/1117

Sainju, U. M., Senwo, Z. N., Nyakatawa, E. Z., Tazisong, I. A., & Reddy, K. C. (2008). Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture, Ecosystems & Environment, 127(3-4), 234-240. https://doi.org/10.1016/j.agee.2008.04.006

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018). Brazilian soil classification system (5th ed.). Embrapa.

Scherer, E. E., Nesi, C. N., & Massotti, Z. (2010). Long-term swine manure fertilization and its effects on soil chemical properties in Santa Catarina, southern Brazil. Revista Brasileira de Ciência do Solo, 34(4), 1375-1383. https://doi.org/10.1590/S0100-06832010000400034

Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., & Kleinman, P. (2013). Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 42(5), 1308-1326. https://doi.org/10.2134/jeq2013.03.0098

Sigua, G. C., Hunt, P. G., Stone, K. C., Cantrell, K. B., & Novak, J. M. (2014). Contrasting effects of sorghum biochars and sorghum residues on soil chemical changes of coastal plains Ultisols with winter wheat. Soil Science, 179, 383-392. https://doi.org/10.1097/SS.0000000000000078

Sigua, G. C., Novak, J. M., & Watts, D. W. (2016). Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars. Chemosphere, 142, 168-175. https://doi.org/10.1016/j.chemosphere.2015.06.016

Silva, L. S., Galindo, I. C. L., Gomes, R. P., Campos, M. C. C., Souza, E. R., & Cunha, J. M. (2018). Chemical changes of soil and water in hillside areas under intensive horticulture. Engenharia Agrícola, 38(3), 351-360. https://doi.org/10.1590/1809-4430-eng.agric.v38n3p351-360/2018

Silva, L. S., Laroca, J. V. S., Coelho, A. P., Gonçalves, E. C., Gomes, R. P., Pacheco, L. P., Carvalho, P. C. F., Pires, G. C., Oliveira, R. L., Souza, J. M. A., Freitas, C. M., Cabral, C. E. A., Wruck, F. J., & Souza, E. D. (2022). Does grass-legume intercropping change soil quality and grain yield in integrated crop-livestock systems? Applied Soil Ecology, 170, 104257. https://doi.org/10.1016/j.apsoil.2021.104257

Soil Survey Staff. (2014). Soil taxonomy (12th ed.). USDA-NASS. https://sl1nk.com/LsD5r

Sousa, D. M. G., & Lobato, E. (2004). Cerrado: correção do solo e adubação. Embrapa Informação Tecnológica.

Statsoft., 2004. Statistica (data analysis software system), version 7. www.statsoft.com

Szogi, A. A., Bauer, P. J., & Vanotti, M. B. (2012). Vertical distribution of phosphorus in a sandy soil fertilized with recovered manure phosphates. Journal of Soils and Sediments, 12(3), 334-340. https://doi.org/10.1007/s11368-011-0452-2

Tang, Y., Zhang, H., Schroder, J. L., Payton, M. E., & Zhou, D. (2007). Animal manure reduces aluminum toxicity in an acid soil. Soil Science Society of America Journal, 71(6), 1699-1707. https://doi.org/10.2136/sssaj2007.0008

Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais. UFRGS.

Tiecher, T., Tiecher, T. L., Mallmann, F. J. K., Zafar, M., Ceretta, C. A., Lourenzi, C. R., Brunetto, G., Gatiboni, L. C., & Santos, D. R. (2017). Chemical, biological, and biochemical parameters of the soil p cycle after long-term pig slurry application in no-tillage system. Revista Brasileira de Ciência do Solo, 41, 1-16. https://doi.org/10.1590/18069657rbcs20170037

Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análise de solo (3. ed.). Embrapa.

Tounkara, A., Clermont-Dauphin, C., Affholder, F., Ndiaye, S., Masse, D., & Cournac, L. (2020). Inorganic fertilizer use efficiency of millet crop increased with organic fertilizer application in rainfed agriculture on smallholdings in central Senegal. Agriculture, Ecosystems & Environment, 294, 106878. https://doi.org/10.1016/j.agee.2020.106878

United States Department of Agriculture, National Agricultural Statistics Service. (2015). Poultry production and value: 2014 summary. USDA/NASS.

Vanda-Sebastião, J. S., Ferrer-Castillo, A., Costa-Quizembe, J., & Carvalho-Zacarias, E. F. (2019). Aplicação de doses crescentes de calcário por incubação nos solos da chianga-huambo, Angola. Revista Cubana de Química, 31(2), 258-282.

Vieira, M. C., Ramos, M. B. M., Heredia Zárate, N. A., Luciano, A. T., Gonçalves, W. V., Rodrigues, W. B., Tabaldi, L. A., Carvalho, T. M., Soares, L. F.& Siqueira, J. M. (2015). Adubação fosfatada associada à cama de frango e sua influência na produtividade e no teor de flavonoides da marcela (Achyrocline satureioides (Lam.) DC. em duas épocas de colheita. Revista Brasileira de Plantas Medicinais, 17(2), 246-253. https://doi.org/10.1590/1983-084X/13_042

Vasconcelos, R. F. B., Souza, E. R., Cantalice, J. R. B., & Silva, L. S. (2014). Physical quality of Yellow Latosol from coastal tablelands in different sugarcane management systems. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(4), 381-386. https://doi.org/10.1590/S1415-43662014000400004

Walkley, A., & Armstrong Black, I. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003

Zhang, F., Liu, Y., Bai, M. (2017). Effects of different fertilizations on soil acidification of Phyllostachys heterocycla cv. pubescens stands. Journal of Zhejiang Forestry Science and Technology, 37(2), 60-64.

Zhou, W., Han, G., Liu, M., & Li, X. (2019). Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ, 7, 1-15. https://doi.org/10.7717/peerj.7880

Publicado
2025-09-02
Como Citar
Gasques, L. R., Silva, L. S., Nogueira, B. K. A., Davi, J. E. A., Ribeiro, D. O., Tiecher, T., Ratke, R. F., & Souza, E. D. de. (2025). Long-term successive poultry litter application improves Oxisol fertility in the Brazilian Cerrado. Acta Scientiarum. Agronomy, 47(1), e72563. https://doi.org/10.4025/actasciagron.v47i1.72563

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus