Fuzzy logic in the simultaneous selection of quantitative and qualitative descriptors for kale

  • Ana Clara Gonçalves Fernandes Universidade Federal de Minas Gerais https://orcid.org/0000-0002-8161-8130
  • Alcinei Mistico Azevedo Universidade Federal de Minas Gerais
  • Valter Carvalho Andrade Júnior Universidade Federal de Lavras
  • Derly Jose Henriques da Silva Universidade Federal de Viçosa
  • Orlando Gonçalves Brito Universidade Federal de Lavras
  • Nermy Ribeiro Valadares Universidade Federal de Minas Gerais
Palavras-chave: selection indices; Mulamba–Mock; computational intelligence; genetical improvement; Brassica oleracea L. var. acephala DC.

Resumo

Simultaneous selection in genetic improvement presents difficulties in selecting qualitative traits as well as the desired commercial ranges for quantitative traits. Thus, fuzzy logic has become an alternative, enabling the computational modelling of the researcher’s experience. This study aimed to assess the efficiency of fuzzy logic in simultaneous selection considering both qualitative and quantitative descriptors. The developed methodology was applied to data from two experiments with kale half-sibs. The first experiment was carried out in Viçosa in randomised blocks, with 24 families of kale half-sibs, 4 replications, and 5 plants per plot. The second experiment was carried out in Montes Claros in randomised blocks, with 36 kale genotypes, 33 families of half-sibs, and 3 commercial cultivars, with 4 replications and 6 plants per plot. Quantitative and qualitative traits were evaluated, and individual genetic values were obtained using REML/BLUP. Genetic gains were evaluated based on the Mulamba–Mock index and the developed fuzzy systems. The selection gains were similar for quantitative traits, but fuzzy logic also selected qualitative traits, and thus stands out as a potential tool for kale genetic improvement. The selection of individuals by the fuzzy methodology enables estimated selection gains in a favourable direction for qualitative and quantitative traits, enabling the automation of more accurate and standardised decision-making.

Downloads

Não há dados estatísticos.

Referências

Amaral Júnior, A. T., Freitas Júnior, S. P., Rangel, R. M., Pena, G. F., Ribeiro, R. M., Morais, R. C., & Schuelter, A. R. (2010). Improvement of a popcorn population using selection indexes from a fourth cycle of recurrent selection program carried out in two different environments. Genetics and Molecular Research, 9(1), 340–347. https://doi.org/10.4238/vol9-1gmr702

Azevedo, A. M., Andrade Júnior, V. C., Santos, A. A., Sousa Júnior, A. S., Oliveira, A. J. M., & Ferreira, M. A. M. (2017). Population parameters and selection of kale genotypes using Bayesian inference in a multi-trait linear model. Acta Scientiarum. Agronomy, 39(1), 25-31. https://doi.org/10.4025/actasciagron.v39i1.30856

Bertini, C. H. C. M., Almeida, W. S., Silva, A. P. M., Silva, J. W. L., & Teófilo, E. M. (2010). Análise multivariada e índice de seleção na identificação de genótipos superiores de feijão-caupi. Acta Scientiarum. Agronomy, 32, 613–619. https://doi.org/10.4025/actasciagron.v32i4.4631

Cardoso, D. B. O., Oliveira, L. F., Souza, G. S. D., Garcia, M. F., Medeiros, L. A., Faria, P. N., Cruz, C. D., & Sousa, L. B. D. (2021). Using fuzzy logic to select coloured-fibre cotton genotypes based on adaptability and yield stability. Acta Scientiarum. Agronomy, 43, e50530. https://doi.org/10.4025/actasciagron.v43i1.50530

Carneiro, A. R. T., Sanglard, D. A., Azevedo, A. M., Souza, T. L. P. O., Pereira, H. S., & Melo, L. C. (2019). Fuzzy logic in automation for interpretation of adaptability and stability in plant breeding studies. Scientia Agricola, 76(2), 123-129. https://doi.org/10.1590/1678-992x-2017-0207

Carneiro, V. Q., Prado, A. L., Cruz, C. D., Carneiro, P. C. S., Nascimento, M., & Carneiro, J. E. S. (2018). Fuzzy control systems for decision-making in cultivars recommendation. Acta Scientiarum. Agronomy, 40(1), 1-8. https://doi.org/10.4025/actasciagron.v40i1.39314

Casillas, J., Cordón, O., Triguero, F. H., & Magdalena, L. (2013). Interpretability issues in fuzzy modeling (v. 128). Springer.

Chakwizira, E., Fletcher, A. L., Ruiter, J. M., Meenken, E., Maley, S., & Wilson, D. R. (2009). Kale dry matter yield responses to nitrogen and phosphorus application. Agronomy New Zealand, 39(1), 59-70.

Crevelari, J. A., Durães, N. N. L., Bendia, L. C. R., Silva, A. J., Azevedo, F. H. V., Azeredo, V. C., & Pereira, M. G. (2018). Assessment of agronomic performance and prediction of genetic gains through selection indices in silage corn. Australian Journal of Crop Science, 12(5), 800-807. https://doi.org/10.21475/ajcs.18.12.05.PNE1004

Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673-689. https://doi.org/10.1007/s00018-014-1767-0

Fernandes, A. C.G., Azevedo, A. M., Valadares, N. R., Rodrigues, C. H. O., Brito, O. G., Andrade Júnior, V. C., & Aspiazú, I. (2022). Fuzzy logic applied to simultaneous selection of sweet potato genotypes. Horticultura Brasileira, 40, 63-70. http://dx.doi.org/10.1590/s0102-0536-20220108

Huang, S., Weigel, D., Beachy, R. N., & Li, J. (2016). A proposed regulatory framework for genome-edited crops. Nature Genetics, 48(2), 109-111. https://doi.org/10.1038/ng.3484

Hazel, L. N. (1943). The genetic basis for constructing selection indexes. Genetics, 28(6), 476-490. https://doi.org/10.1093/genetics/28.6.476

International Board for Plant Genetic Resources. (1990). Descriptors for Brassica and Raphanus. IBPGR.

Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. In IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404-418. https://doi.org/10.1109/21.52551

Luz, P. B., Santos, A. A. B., Ambrosio, V. C., Neves, L. G., & Tavares, A. R. (2018). Selection of indexes to evaluate the genetic variability aiming ornamental use of peppers accessions. Ornamental Horticulture, 24(1), 7-11. https://doi.org/10.14295/oh.v24i1.1109

Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications–Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126-4148. https://doi.org/10.1016/j.eswa.2015.01.003

Mulamba, N. N., & Mock, J. J. (1978). Improvement of yield potential of the Eto Blanco maize (Zea mays L.) population by breeding for plant traits. Egyptian Journal of Genetics and Cytology, 7(1), 40-51.

Mushtaq, Z., Sani, S. S., Hamed, K., Ali, A., Ali, A., Belal, S. M., & Naqvi, A. A. (2016). Automatic agricultural land irrigation system by fuzzy logic. In 2016 3rd International Conference on Information Science and Control Engineering. IEEE. https://doi.org/10.1109/ICISCE.2016.190

Pang, B., & Bai, S. (2013). An integrated fuzzy synthetic evaluation approach for supplier selection based on analytic network process. Journal of Intelligent Manufacturing, 24, 163-174. https://doi.org/10.1007/s10845-011-0551-3

Papadopoulos, A., Kalivas, D., & Hatzichristos, T. (2011). Decision support system for nitrogen fertilization using fuzzy theory. Computers and Electronics in Agriculture, 78(2), 130-139. https://doi.org/10.1016/j.compag.2011.06.007

Petropoulos, S., Karavas, C. S., Balafoutis, A. T., Paraskevopoulos, I., Kallithraka, S., & Kotseridis, Y. (2017). Fuzzy logic tool for wine quality classification. Computers and Electronics in Agriculture, 142(Part B), 552-562. https://doi.org/10.1016/j.compag.2017.11.015

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/index.html

Rincker, K., Nelson, R., Specht, J., Sleper, D., Cary, T., Cianzio, S. R., Casteel, S., Conley, S., Chen, P., Davis, V., Fox, C., Graef, G., Godsey, C., Holshouser, D., Jiang, G.-L., Kantartzi, S. K., Kenworthy, W., Lee, C., Mian, R., … Diers, B. (2014). Genetic improvement of U.S. soybean in maturity groups II, III, and IV. Crop Science, 54(4), 1419-1432. https://doi.org/10.2135/cropsci2013.10.0665

Rodrigues, F., Von Pinho, R. G., Albuquerque, C. J. B., & Von Pinho, E. V. R. (2011). Índice de seleção e estimativa de parâmetros genéticos e fenotípicos para características relacionadas com a produção de milho-verde. Ciência e Agrotecnologia, 35, 278–286. https://doi.org/10.1590/S1413-70542011000200007

Rosado, L. D. S., Santos, C. E. M., Bruckner, C. H., Nunes, E. S., & Cruz, C. D. (2012). Simultaneous selection in progenies of yellow passion fruit using selection indexes. Revista Ceres, 59(1), 95-101. https://doi.org/10.1590/S0034-737X2012000100014

Smith, H. F. (1936). A discriminant function for plant selection. Annals of Eugenics, 7(3), 240-250. https://doi.org/10.1111/j.1469-1809.1936.tb02143.x

Publicado
2025-10-20
Como Citar
Fernandes, A. C. G., Azevedo, A. M., Andrade Júnior, V. C., Silva, D. J. H. da, Gonçalves Brito, O., & Valadares, N. R. (2025). Fuzzy logic in the simultaneous selection of quantitative and qualitative descriptors for kale. Acta Scientiarum. Agronomy, 48(1), e73211. https://doi.org/10.4025/actasciagron.v48i1.73211
Seção
Melhoramento Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus