Non-destructive method for predicting the area and weight of red pitaya cladodes using linear dimensions

  • Ivanice da Silva Santos Universidade Federal Rural do Semi-Árido
  • Natanael Lucena Ferreira Universidade Federal Rural de Pernambuco
  • João Everthon da Silva Ribeiro Universidade Federal Rural do Semi-Árido https://orcid.org/0000-0002-1937-0066
  • Vivian Soraia da Silva Santos Universidade Federal Rural de Pernambuco
  • Sarah Alencar de Sá Universidade Federal Rural do Semi-Árido
  • Fred Augusto Louredo de Brito Universidade Federal Rural do Semi-Árido
  • Thieres George Freire da Silva Universidade Federal Rural de Pernambuco
  • Adriano do Nascimento Simões Universidade Federal Rural de Pernambuco
Palavras-chave: Selenicereus undatus; Cactaceae; allometric equations; biometrics; width of cladode.

Resumo

The leaf area estimation of crops is a critical analysis because it indicates the photosynthetically active area of the plant. However, some methods are more expensive and difficult to apply to crops, such as pitaya. Thus, the objective of the present work was to determine a non-destructive method of estimating the area and weight of pitaya cladodes using linear dimensions. In an experimental orchard, 101 pitaya cladodes of the species Selenicereus undatus were collected, and the length (L), width (W), cladode area (CA), fresh mass (FM) and dry mass (DM) of the cladodes were measured. The product between the cladodes’ length and width (LW) was then calculated. Linear, non-intercept linear and power models were used to predict the area and weight of cladodes using allometric equations. The criteria for choosing the best equations were based on Pearson’s coefficients of determination and correlation, Willmott’s agreement index, Akaike’s information criterion, root mean squared error and mean absolute error. The equations constructed with the power and linear model were the most suitable for predicting cladode area (CA = 5.577 * LW0.541), cladode fresh mass (FM = 8.50 * W1.138) and cladode dry mass (MD = 3.03 + 1.74 * W). Thus, it was possible to construct a non-destructive and reliable method for predicting the area and weight of pitaya cladodes using the linear dimensions of the cladodes (length and width).

Downloads

Não há dados estatísticos.

Referências

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507

Amorim, P. E. C., Pereira, D. F., Freire, R. I. S., Oliveira, A. M. F., Mendonça, V., & Ribeiro, J. E. S. (2024a). A non-destructive method for leaflet area prediction of Spondias tuberosa Arruda: An approach to regression models. Bragantia, 83, 1-12. https://doi.org/10.1590/1678-4499.20230269

Amorim, P. E. C., Oliveira, A. M. F., Lima, J. L., Sá, F. V. S., Mendonça, V., & Ribeiro, J. E. S. (2024b). Allometric models for non-destructive estimation of leaflet area of umbu-cajazeira (Spondias sp.). Ciência e Agrotecnologia, 48, 1-7. https://doi.org/10.1590/1413-7054202448009924

Bezerra, A. C., Silva, J. L. B., Silva, D. A. O., Batista, P. H. D., Pinheiro, L. C., Lopes, P. M. O., & Moura, G. B. A. (2020). Monitoramento espaço-temporal da detecção de mudanças em vegetação de Caatinga por sensoriamento remoto no Semiárido brasileiro. Revista Brasileira de Geografia Física, 13(1), 286-301. https://doi.org/10.26848/rbgf.v13.1.p286-301

Brito, L. P. S., Oliveira, E. R., Luis, P. H. D., Ramos, J. D., Almeida, L. G. F., & Santos, V. A. (2024). Production performance of Hylocereus polyrhizus based on cladode size and position. Comunicata Scientiae, 15, 1-7. https://doi.org/10.14295/cs.v15.3547

Carvalho, J. O., Toebe, M., Tartaglia, F. L., Bandeira, C. T., & Tambara, A. L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais da Academia Brasileira de Ciências, 89(3), 1851-1868. https://doi.org/10.1590/0001-3765201720170077

Cruz, M. C. M., & Martins, R. S. (2022). Pitaia no Brasil: nova opção de cultivo. Epagri.

Dias, M. G., Silva, T. I., Ribeiro, J. E. S., Grossi, J. A. S., & Barbosa, J. G. (2022). Allometric models for estimating the leaf area of lisianthus (Eustoma grandiflorum) using a non-destructive method. Revista Ceres, 69(1), 7-12. https://doi.org/10.1590/0034-737X202269010002

Goergen, P. C. H., Lago, I., Schwab, N. T., Alves, A. F., Freitas, C. P. O., & Selli, V. S. (2021). Allometric relationship and leaf area modeling estimation on chia by non-destructive method. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(5), 305-311. https://doi.org/10.1590/1807-1929/agriambi.v25n5p305-311

Huaccha-Castillo, A. E., Fernandez-Zarate, F. H., Pérez-Delgado, L. J., Tantalean-Osores, K. S., Vaca-Marquina, S. P., Sanchez-Santillan, T., Morales-Rojas, E., Seminario-Cunya, A., & Quiñones-Huatangari, L. (2023). Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models. Forest Science and Technology, 19(1), 59-67. https://doi.org/10.1080/21580103.2023.2170473

Huang, M., & Zhao, J. (2024). Recent advances in postharvest storage and preservation technology of pitaya (dragon fruit). The Journal of Horticultural Science and Biotechnology, 99(2), 115-129. https://doi.org/10.1080/14620316.2023.2263757

Leite, M. L. M. V., Lucena, L. R. R., Oliveira, A. D. M., Costa, A. C. L., Anjos, F. L. Q., Farias, I. M., Simões, V. J. L. P., & Almeida, M. C. R. (2020). Cladode area and weight of Napolea cochenillifera clone A as function of morphometric characteristics. Journal of the Professional Association for Cactus Development, 22, 18-28. https://doi.org/10.56890/jpacd.v22i.15

Lucena, L. R. R., Leite, M. L. M. V., Simões, V. J. L. P., Nóbrega, C., Almeida, M. C. R., & Simplicio, A. J. B. (2021). Estimating the area and weight of cactus forage cladode using linear dimensions. Acta Scientiarum. Agronomy, 43, 1-10. https://doi.org/10.4025/actasciagron.v43i1.45460

Mela, D., Dias, M. G., Silva, T. I., Ribeiro, J. E. S., Martinez, A. C. P., & Zuín, A. H. L. (2022). Estimation of Thunbergia grandiflora leaf area from allometric models. Comunicata Scientiae, 13, 1-6. https://doi.org/10.14295/cs.v13.3722

Mitsui, Y. (2024). Tamanho do mercado de fruta do dragão e análises de ações – tendências e previsões de crescimento (2024–2029). Epagri. https://www.mordorintelligence.com/pt/industry-reports/dragon-fruit-market

Oliveira, M. M. T., Albano-Machado, F. G., Penha, D. M., Pinho, M. M., Natale, W., Miranda, M. R. A., Moura, C. F. H., Alves, R. E., & Corrêa, M. C. M. (2021). Shade improves growth, photosynthetic performance, production and postharvest quality in red pitahaya (Hylocereus costaricensis). Scientia Horticulturae, 286, 110217. https://doi.org/10.1016/j.scienta.2021.110217

Patel, D. P., Bisen, A., Porte, S. S., Tirkey, P. L., & Pragati. (2023). Dragon fruit: A health potential and remunerative fruit crop for Chhattisgarh. The Pharma Innovation Journal, 12(11), 1513-1520.

R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Ribeiro, J. E. S., Nobrega, J. S., Coêlho, E. S., Dias, T. J., & Melo, M. F. (2022a). Estimation leaf area of basil cultivars through linear dimensions of leaves. Ceres, 69(2), 139-147. https://doi.org/10.1590/0034-737X202269020003

Ribeiro, J. E. S., Figueiredo, F. R. A., Nobrega, J. S., Coêlho, E. S., & Melo, M. F. (2022b). Leaf area of Erythrina velutina Willd. (Fabaceae) by using allometric equations. Floresta, 52(1), 93-102. https://doi.org/10.5380/rf.v52i1.78059

Ribeiro, J. E. S., Silva, A. G. C., Coêlho, E. S., Lima, J. V. L., Barros Júnior, A. P., & Silveira, L. M. (2023a). A non-destructive method for predicting the leaflet area of Cassia fistula L: An approach to regression models. South African Journal of Botany, 163, 30-36. https://doi.org/10.1016/j.sajb.2023.10.016

Ribeiro, J. E. S., Coêlho, E. S., Oliveira, A. K. S., Silva, A. G. C., Lopes, W. A. R., Oliveira, P. H. A., Silva, E. F., Barros Júnior, A. P., & Silveira, L. M. (2023b). Artificial neural network approach for predicting the sesame (Sesamum indicum L.) leaf area: A non-destructive and accurate method. Heliyon, 9(7), 1-12. https://doi.org/10.1016/j.heliyon.2023.e17834

Ribeiro, J. E. S., Coêlho, E. S., Pessoa, A. M. S., Oliveira, A. K. S., Oliveira, A. M. F., Barros Júnior, A. P., Mendonça, V., & Nunes, G. H. S. (2023c). Nondestructive method for estimating the leaf area of sapodilla from linear leaf dimensions. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(3), 209-215. https://doi.org/10.1590/1807-1929/agriambi.v27n3p209-215

Ribeiro, J. E. S., Coêlho, E. S., Dias, T. J., & Albuquerque, M. B. (2023d). Allometric equations for estimating the leaf area of Thespesia populnea by linear dimensions of leaf blades. Iheringia. Série Botânica, 78, 1-8. https://doi.org/10.21826/2446-82312023v78e2023012

Ribeiro, J. E. S., Silva, A. G. C., Lima, J. V. L., Oliveira, P. H. A., Coêlho, E. S., Silveira, L. M., & Barros Júnior, A. P. (2024). Leaf area prediction of sweet potato cultivars: An approach to a non-destructive and accurate method. South African Journal of Botany, 172, 42-51. https://doi.org/10.1016/j.sajb.2024.07.006

Sabouri, A., & Hassanpour, Y. (2015). Prediction of leaf area, fresh and dry weight in stinging nettle (Urtica dioica) by linear regression models. Medicinal & Aromatic Plants, 4(2), 1-6. https://doi.org/10.4172/2167-0412.1000188

Sala, F., Dobrei, A., & Herbei, M. V. (2023). Leaf area calculation models for vines based on foliar descriptors. Plants, 10(11), 1-15. https://doi.org/10.3390/plants10112453

Salazar, J. C. S., Melgarejo, L. M., Bautista, L. H. D., Rienzo, J. A. D., & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 229, 19-24. https://doi.org/10.1016/j.scienta.2017.10.034

Trindade, A. R., Paiva, P., Lacerda, V., Marques, N., Neto, L., & Duarte, A. (2023). Pitaya is a new alternative crop for Iberian Peninsula: Biology and edaphoclimatic requirements. Plants, 12(18), 1-17. https://doi.org/10.3390/plants12183212

Verona-Ruiz, A., Urcia-Cena, J., & Paucar-Menacho, L. M. (2020). Pitahaya (Hylocereus spp) culture, physicochemical characteristics, nutritional composition, and bioactive compounds. Scientia Agropecuaria, 11(3), 439-453. https://doi.org/10.17268/sci.agropecu.2020.03.16

Publicado
2025-10-21
Como Citar
Santos, I. da S., Ferreira, N. L., Ribeiro, J. E. da S., Santos, V. S. da S., Sá, S. A. de, Brito, F. A. L. de, Silva, T. G. F. da, & Simões, A. do N. (2025). Non-destructive method for predicting the area and weight of red pitaya cladodes using linear dimensions. Acta Scientiarum. Agronomy, 48(1), e73265. https://doi.org/10.4025/actasciagron.v48i1.73265
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus