Non-destructive method for predicting the area and weight of red pitaya cladodes using linear dimensions
Resumo
The leaf area estimation of crops is a critical analysis because it indicates the photosynthetically active area of the plant. However, some methods are more expensive and difficult to apply to crops, such as pitaya. Thus, the objective of the present work was to determine a non-destructive method of estimating the area and weight of pitaya cladodes using linear dimensions. In an experimental orchard, 101 pitaya cladodes of the species Selenicereus undatus were collected, and the length (L), width (W), cladode area (CA), fresh mass (FM) and dry mass (DM) of the cladodes were measured. The product between the cladodes’ length and width (LW) was then calculated. Linear, non-intercept linear and power models were used to predict the area and weight of cladodes using allometric equations. The criteria for choosing the best equations were based on Pearson’s coefficients of determination and correlation, Willmott’s agreement index, Akaike’s information criterion, root mean squared error and mean absolute error. The equations constructed with the power and linear model were the most suitable for predicting cladode area (CA = 5.577 * LW0.541), cladode fresh mass (FM = 8.50 * W1.138) and cladode dry mass (MD = 3.03 + 1.74 * W). Thus, it was possible to construct a non-destructive and reliable method for predicting the area and weight of pitaya cladodes using the linear dimensions of the cladodes (length and width).
Downloads
Referências
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507
Amorim, P. E. C., Pereira, D. F., Freire, R. I. S., Oliveira, A. M. F., Mendonça, V., & Ribeiro, J. E. S. (2024a). A non-destructive method for leaflet area prediction of Spondias tuberosa Arruda: An approach to regression models. Bragantia, 83, 1-12. https://doi.org/10.1590/1678-4499.20230269
Amorim, P. E. C., Oliveira, A. M. F., Lima, J. L., Sá, F. V. S., Mendonça, V., & Ribeiro, J. E. S. (2024b). Allometric models for non-destructive estimation of leaflet area of umbu-cajazeira (Spondias sp.). Ciência e Agrotecnologia, 48, 1-7. https://doi.org/10.1590/1413-7054202448009924
Bezerra, A. C., Silva, J. L. B., Silva, D. A. O., Batista, P. H. D., Pinheiro, L. C., Lopes, P. M. O., & Moura, G. B. A. (2020). Monitoramento espaço-temporal da detecção de mudanças em vegetação de Caatinga por sensoriamento remoto no Semiárido brasileiro. Revista Brasileira de Geografia Física, 13(1), 286-301. https://doi.org/10.26848/rbgf.v13.1.p286-301
Brito, L. P. S., Oliveira, E. R., Luis, P. H. D., Ramos, J. D., Almeida, L. G. F., & Santos, V. A. (2024). Production performance of Hylocereus polyrhizus based on cladode size and position. Comunicata Scientiae, 15, 1-7. https://doi.org/10.14295/cs.v15.3547
Carvalho, J. O., Toebe, M., Tartaglia, F. L., Bandeira, C. T., & Tambara, A. L. (2017). Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais da Academia Brasileira de Ciências, 89(3), 1851-1868. https://doi.org/10.1590/0001-3765201720170077
Cruz, M. C. M., & Martins, R. S. (2022). Pitaia no Brasil: nova opção de cultivo. Epagri.
Dias, M. G., Silva, T. I., Ribeiro, J. E. S., Grossi, J. A. S., & Barbosa, J. G. (2022). Allometric models for estimating the leaf area of lisianthus (Eustoma grandiflorum) using a non-destructive method. Revista Ceres, 69(1), 7-12. https://doi.org/10.1590/0034-737X202269010002
Goergen, P. C. H., Lago, I., Schwab, N. T., Alves, A. F., Freitas, C. P. O., & Selli, V. S. (2021). Allometric relationship and leaf area modeling estimation on chia by non-destructive method. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(5), 305-311. https://doi.org/10.1590/1807-1929/agriambi.v25n5p305-311
Huaccha-Castillo, A. E., Fernandez-Zarate, F. H., Pérez-Delgado, L. J., Tantalean-Osores, K. S., Vaca-Marquina, S. P., Sanchez-Santillan, T., Morales-Rojas, E., Seminario-Cunya, A., & Quiñones-Huatangari, L. (2023). Non-destructive estimation of leaf area and leaf weight of Cinchona officinalis L. (Rubiaceae) based on linear models. Forest Science and Technology, 19(1), 59-67. https://doi.org/10.1080/21580103.2023.2170473
Huang, M., & Zhao, J. (2024). Recent advances in postharvest storage and preservation technology of pitaya (dragon fruit). The Journal of Horticultural Science and Biotechnology, 99(2), 115-129. https://doi.org/10.1080/14620316.2023.2263757
Leite, M. L. M. V., Lucena, L. R. R., Oliveira, A. D. M., Costa, A. C. L., Anjos, F. L. Q., Farias, I. M., Simões, V. J. L. P., & Almeida, M. C. R. (2020). Cladode area and weight of Napolea cochenillifera clone A as function of morphometric characteristics. Journal of the Professional Association for Cactus Development, 22, 18-28. https://doi.org/10.56890/jpacd.v22i.15
Lucena, L. R. R., Leite, M. L. M. V., Simões, V. J. L. P., Nóbrega, C., Almeida, M. C. R., & Simplicio, A. J. B. (2021). Estimating the area and weight of cactus forage cladode using linear dimensions. Acta Scientiarum. Agronomy, 43, 1-10. https://doi.org/10.4025/actasciagron.v43i1.45460
Mela, D., Dias, M. G., Silva, T. I., Ribeiro, J. E. S., Martinez, A. C. P., & Zuín, A. H. L. (2022). Estimation of Thunbergia grandiflora leaf area from allometric models. Comunicata Scientiae, 13, 1-6. https://doi.org/10.14295/cs.v13.3722
Mitsui, Y. (2024). Tamanho do mercado de fruta do dragão e análises de ações – tendências e previsões de crescimento (2024–2029). Epagri. https://www.mordorintelligence.com/pt/industry-reports/dragon-fruit-market
Oliveira, M. M. T., Albano-Machado, F. G., Penha, D. M., Pinho, M. M., Natale, W., Miranda, M. R. A., Moura, C. F. H., Alves, R. E., & Corrêa, M. C. M. (2021). Shade improves growth, photosynthetic performance, production and postharvest quality in red pitahaya (Hylocereus costaricensis). Scientia Horticulturae, 286, 110217. https://doi.org/10.1016/j.scienta.2021.110217
Patel, D. P., Bisen, A., Porte, S. S., Tirkey, P. L., & Pragati. (2023). Dragon fruit: A health potential and remunerative fruit crop for Chhattisgarh. The Pharma Innovation Journal, 12(11), 1513-1520.
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ribeiro, J. E. S., Nobrega, J. S., Coêlho, E. S., Dias, T. J., & Melo, M. F. (2022a). Estimation leaf area of basil cultivars through linear dimensions of leaves. Ceres, 69(2), 139-147. https://doi.org/10.1590/0034-737X202269020003
Ribeiro, J. E. S., Figueiredo, F. R. A., Nobrega, J. S., Coêlho, E. S., & Melo, M. F. (2022b). Leaf area of Erythrina velutina Willd. (Fabaceae) by using allometric equations. Floresta, 52(1), 93-102. https://doi.org/10.5380/rf.v52i1.78059
Ribeiro, J. E. S., Silva, A. G. C., Coêlho, E. S., Lima, J. V. L., Barros Júnior, A. P., & Silveira, L. M. (2023a). A non-destructive method for predicting the leaflet area of Cassia fistula L: An approach to regression models. South African Journal of Botany, 163, 30-36. https://doi.org/10.1016/j.sajb.2023.10.016
Ribeiro, J. E. S., Coêlho, E. S., Oliveira, A. K. S., Silva, A. G. C., Lopes, W. A. R., Oliveira, P. H. A., Silva, E. F., Barros Júnior, A. P., & Silveira, L. M. (2023b). Artificial neural network approach for predicting the sesame (Sesamum indicum L.) leaf area: A non-destructive and accurate method. Heliyon, 9(7), 1-12. https://doi.org/10.1016/j.heliyon.2023.e17834
Ribeiro, J. E. S., Coêlho, E. S., Pessoa, A. M. S., Oliveira, A. K. S., Oliveira, A. M. F., Barros Júnior, A. P., Mendonça, V., & Nunes, G. H. S. (2023c). Nondestructive method for estimating the leaf area of sapodilla from linear leaf dimensions. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(3), 209-215. https://doi.org/10.1590/1807-1929/agriambi.v27n3p209-215
Ribeiro, J. E. S., Coêlho, E. S., Dias, T. J., & Albuquerque, M. B. (2023d). Allometric equations for estimating the leaf area of Thespesia populnea by linear dimensions of leaf blades. Iheringia. Série Botânica, 78, 1-8. https://doi.org/10.21826/2446-82312023v78e2023012
Ribeiro, J. E. S., Silva, A. G. C., Lima, J. V. L., Oliveira, P. H. A., Coêlho, E. S., Silveira, L. M., & Barros Júnior, A. P. (2024). Leaf area prediction of sweet potato cultivars: An approach to a non-destructive and accurate method. South African Journal of Botany, 172, 42-51. https://doi.org/10.1016/j.sajb.2024.07.006
Sabouri, A., & Hassanpour, Y. (2015). Prediction of leaf area, fresh and dry weight in stinging nettle (Urtica dioica) by linear regression models. Medicinal & Aromatic Plants, 4(2), 1-6. https://doi.org/10.4172/2167-0412.1000188
Sala, F., Dobrei, A., & Herbei, M. V. (2023). Leaf area calculation models for vines based on foliar descriptors. Plants, 10(11), 1-15. https://doi.org/10.3390/plants10112453
Salazar, J. C. S., Melgarejo, L. M., Bautista, L. H. D., Rienzo, J. A. D., & Casanoves, F. (2018). Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.). Scientia Horticulturae, 229, 19-24. https://doi.org/10.1016/j.scienta.2017.10.034
Trindade, A. R., Paiva, P., Lacerda, V., Marques, N., Neto, L., & Duarte, A. (2023). Pitaya is a new alternative crop for Iberian Peninsula: Biology and edaphoclimatic requirements. Plants, 12(18), 1-17. https://doi.org/10.3390/plants12183212
Verona-Ruiz, A., Urcia-Cena, J., & Paucar-Menacho, L. M. (2020). Pitahaya (Hylocereus spp) culture, physicochemical characteristics, nutritional composition, and bioactive compounds. Scientia Agropecuaria, 11(3), 439-453. https://doi.org/10.17268/sci.agropecu.2020.03.16
Copyright (c) 2026 Ivanice da Silva Santos, Natanael Lucena Ferreira, João Everthon da Silva Ribeiro, Vivian Soraia da Silva Santos, Sarah Alencar de Sá, Fred Augusto Louredo de Brito, Thieres George Freire da Silva, Adriano do Nascimento Simões (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.







































