Hygroscopicity and thermodynamic properties of grains of Moringa oleifera L.

Palavras-chave: mathematical modelling; isosteric heat; Gibbs free energy, entropy.

Resumo

The Moringa plant, widely recognized for its uses in both animal and human nutrition as well as in medicine, has seeds rich in oil and protein. For their maintenance and processing, safe storage conditions are needed, in addition to an understanding of the energy required for this process. The objective of this work was to study the hygroscopic and thermodynamic properties of moringa grains. The static gravimetric method was used at temperatures of 20–70°C and relative humidities of 10.75–85.11%. Nine mathematical models were fitted to the experimental water sorption data. The modified Halsey model provided the best fit, with an R2 of 97.72%, P of 6.71%, and SE of 0.01, and was therefore used to calculate the thermodynamic properties. An increase in the equilibrium water content from 0.039 to 0.162 (db) resulted in a decrease in the energy released during adsorption (Qst) from -3613.589 to -2453.029 kJ kg-1, the differential entropy (∆S) from -2.519 to -0.115, and Gibbs free energy (∆G) from -351.897 to -21.773. This process was considered spontaneous.

Downloads

Não há dados estatísticos.

Referências

Alimi, B. A., Workneh, T. S., Oke, M. O., & Tesfay, S. Z. (2017). Moisture sorption isotherm characteristics of moringa seed at two different temperatures. In VII International Conference on Managing Quality in Chains (MQUIC2017) and II International Symposium on Ornamentals in 1201 (pp. 191-196). https://doi.org/10.17660/ActaHortic.2018.1201.26

Andrade, E. T., Figueira, V. G., Teixeira, L. P., Taveira, J. H. S., & Borém, F. M. (2017). Determination of the hygroscopic equilibrium and isosteric heat of aji chili pepper. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 865-871. https://doi.org/10.1590/1807-1929/agriambi.v21n12p865-871

Barbosa-Cánovas, G. V., & Vega-Mercado, H. (1996). Dehydration of foods. Chapman & Hall.

Bessa, J. F. V., Resende, O., Oliveira, D. E. C., Lima, R. R., Quequeto, W. D., & Siqueira, V. C. (2021). Adsorption isotherms and thermodynamic properties of Carthamus tinctorius L. seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(10), 696-702. https://doi.org/10.1590/1807-1929/agriambi.v25n10p696-702

Brasil. (2009). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes. MAPA/ACS.

Brooker, D. B., Bakker-Arkema, F. W., & Hall, C. W. (1992). Drying and storage of grains and oilseeds. The AVI Publishing Company.

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319. https://doi.org/10.1021/ja01269a023

Chaves, T. H., Resende, O., Oliveira, D. E. C., Smaniotto, T. A. S., & Sousa, K. A. (2015). Isotermas e calor isostérico das sementes de pinhão-manso. Revista Engenharia na Agricultura, 23(1), 9-18. https://doi.org/10.13083/reveng.v23i1.591

Chung, D. S., & Pfost, H. B. (1967). Adsorption and desorption of water vapor by cereal grains and their products Part II: Development of the general isotherm equation. Transactions of the ASAE, 10(4), 552-555. https://doi.org/10.13031/2013.39727

Corrêa, P. C., Martins, D. S. R., & Melo, E. C. (1995). Umigrãos: Programa para o cálculo do teor de umidade de equilíbrio para os principais produtos agrícolas. Centro Nacional de Treinamento em Armazenagem/UFV.

Corrêa, P. C., Oliveira, G. D., & Santos, E. D. S. (2012). Thermodynamic properties of agricultural products processes. In I. Arana (Org.), Physical properties of foods: Novel measurement techniques and applications (pp.131-141). CRC Press.

Corrêa, P. C., Oliveira, G. H. H., Oliveira, A. P. L. R. D., Rodrigues, A. P. L., Vargas-Elías, G. A., & Baptestini, F. M. (2016). Particle size and roasting on water sorption in conilon coffee during storage. Coffee Science, 11(2), 221-233.

Ertugay, M. F., & Certel, M. (2000). Moisture sorption isotherms of cereals at different temperatures. Molecular Nutrition & Food Research, 44(2), 107-109. https://doi.org/10.1002/(SICI)1521-3803(20000301)44:2<107::AID-FOOD107>3.0.CO;2-F

Fasina, O. O. (2006). Thermodynamic properties of sweetpotato. Journal of Food Engineering, 75(2), 149-155. https://doi.org/10.1016/j.jfoodeng.2005.04.004

Gharsallah, K., Rezig, L., Rajoka, M. S. R., Mehwish, H. M., Ali, M. A., & Chew, S. C. (2023). Moringa oleifera: Processing, phytochemical composition, and industrial application. South African Journal of Botany, 160, 180-193. https://doi.org/10.1016/j.sajb.2023.07.008

Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards-A, Physics and Chemistry, 81(1), 89. https://doi.org/10.6028/jres.081A.011

Hay, F. R., Rezaei, S., & Buitink, J. (2022). Seed moisture isotherms, sorption models, and longevity. Frontiers in Plant Science, 13(891913), 1-14. https://doi.org/10.3389/fpls.2022.891913

Iglesias, H. A., & Chirife, J. (1976). Prediction of the effect of temperature on water sorption isotherms of food material. International Journal of Food Science & Technology, 11(2), 109-116. https://doi.org/10.1111/j.1365-2621.1976.tb00707.x

Iglesias, H. A., Chirife, J., & Viollaz, P. (1976). Thermodynamics of wáter sorption by sugar beet root. International Journal of Food Science & Technology, 11(1), 91-101. https://doi.org/10.1111/j.1365-2621.1976.tb00705.x

Isquierdo, E. P., Siqueira, V. C., Borém, F. M., Andrade, E. T., Luz, P. B., & Quequeto, W. D. (2020). Isotermas de sorção e propriedades termodinâmicas de sementes de maracujá doce. Research, Society and Development, 9(5), 1-18. https://doi.org/10.33448/rsd-v9i5.2884

Kaur, G., Sidhu, G. K., & Kaur, P. (2023). Moisture sorption isotherms characteristics for shelf‐life prediction of peanuts (Arachis hypogaea L.). Journal of the Science of Food and Agriculture, 103(6), 3077-3092. https://doi.org/10.1002/jsfa.12475

Labuza, T. P. (1968). Sorption phenomena in foods. Food Technology, 22(3), 15-19.

Labuza, T. P., & Altunakar, B. (2007). Water activity prediction and moisture sorption isotherms. In G. V. Barbosa-Cánovas, A. J. Fontana Jr., S. J. Schmidt, & T. P. Labuza (Eds.), Water activity in foods: fundamentals and applications (pp. 109-154). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470376454.ch5

Labuza, T. P., & Altunakar, B. (2020). Water activity prediction and moisture sorption isotherms. In G. V. Barbosa-Cánovas, A. J. Fontana Jr., S. J. Schmidt, & T. P. Labuza (Eds.), Water activity in foods: fundamentals and applications (pp. 161-205). John Wiley & Sons. https://doi.org/10.1002/9781118765982.ch7

Luo, X.-H., Liu, C., Wang, M.-Y., Li, X.-J., & Jiang, Y.-S. (2024). The hygroscopic properties and sorption isosteric heat of coix seeds. Food Science and Engineering, 5(2), 255-270. https://doi.org/10.37256/fse.5220244583

Matic, I., Guidi, A., Kenzo, M., Mattei, M., & Galgani, A. (2018). Investigation of medicinal plants traditionally used as dietary supplements: A review on Moringa oleifera. Journal of Public Health in Africa, 9(3), 191-199. https://doi.org/10.4081/jphia.2018.841

Matos, J. D. P., Figueirêdo, R. M. F., Queiroz, A. J. M., Moraes, M. S., Silva, S. N., & Silva, L. P. F. R. (2022). Foam mat drying kinetics of jambolan and acerola mixed pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(7), 502-512. https://doi.org/10.1590/1807-1929/agriambi.v26n7p502-512

Mesquita, J. B., Andrade, E. T., & Corrêa, P. C. (2001). Modelos matemáticos e curvas de umidade de equilíbrio de sementes de jacarandá-da-bahia, angico-vermelho e óleo-copaíba. Cerne, 7(2), 12-21.

Mohapatra, D., & Rao, P. S. (2005). A thin layer drying model of parboiled wheat. Journal of Food Engineering, 66(4), 513-518. https://doi.org/10.1016/j.jfoodeng.2004.04.023

Moraes, M. S., Figueirêdo, R. M. F., Queiroz, A. J. M., Silva, L. P. F. R., Gonçalves, M. G., Oliveira, A. P., Esmero, J. A. D., Mascarenhas, N. M. H., Matos, J. D. P., Silva, S. N., Quirino, D. J. C., Oliveira, A. G. Vieira, A. F., Araújo, M. A., Neto, M. S. M., Santos, F. S., Rodrigues, R. C. M., & Costa, M. M. (2021). Elaboration of blends of pitaya pulps with acerola. Journal of Agricultural Science, 13(3), 53-60. https://doi.org/10.5539/jas.v13n3p53

Mubvuma, M. T., Mapanda, S., & Mashonjowa, E. (2013). Effect of storage temperature and duration on germination of moringa seeds (Moringa oleifera). Greener Journal of Agricultural Sciences, 3(5), 427-432. https://doi.org/10.15580/GJAS.2013.3.121912328

Oliveira, G. H. H., Oliveira, A. P. L. R., Corrêa, P. C., Baptestini, F. M., & Zeymer, J. S. (2022). Adsorção de água em sementes de chia: modelagem e propriedades termodinâmicas. Brazilian Journal of Animal and Environmental Research, 5(3), 2892-2909. https://doi.org/10.34188/bjaerv5n3-023

Oliveira, D. E. C., Resende, O., Smaniotto, T. A. S., Sousa, K. A., & Campos, R. C. (2013). Propriedades termodinâmicas de grãos de milho para diferentes teores de água de equilíbrio. Pesquisa Agropecuária Tropical, 43(1), 50-56. https://doi.org/10.1590/S1983-40632013000100007

Padilla, J. R. R., Andrade, E. T., Araújo, B. L. O., & Rios, P. A. (2023). Moringa oleifera L. cake as a potential substitute for aluminum sulphate coagulant for the treatment of surface water. Theoretical and Applied Engineering, 7(3), 10-18. https://doi.org/10.31422/taae.v7i3.51

Peleg, M. (2020). Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis. Food Engineering Reviews, 12, 1-13. https://doi.org/10.1007/S12393-019-09207-x

Polachini, T. C., Morales, S. A. V., Peixoto Filho, L. R., Ribeiro, E. F., Saraiva, L. S., & Basso, R. C. (2023). Physical properties and molecular interactions applied to food processing and formulation. Processes, 11(7), 1-26. https://doi.org/10.3390/pr11072181

Rezaei, S., Buitink, J., & Hay, F. R. (2024). Seed responses to change in ambient humidity and the consequences for storability. Journal of Stored Products Research, 109, 1-7. https://doi.org/10.1016/j.jspr.2024.102477

Rizvi, S. S. H. (2014). Thermodynamic properties of foods in dehydration. In M. A. Rao, S. S. H. Rizvi, & A. K. Datta (Eds.), Engineering properties of foods (pp. 359-436). Taylor & Francis Group.

Rizvi, S. S. H., & Benado, A. L. (1984). Thermodynamic analysis of drying foods. Drying Technology, 2(4), 471-502. https://doi.org/10.1080/07373938408959849

Saa, R. W., Fombang, E. N., Ndjantou, E. B., & Njintang, N. Y. (2019). Treatments and uses of Moringa oleifera seeds in human nutrition: A review. Food Science & Nutrition, 7(6), 1911-1919. https://doi.org/10.1002/fsn3.1057

Santos Cotta, A. A. R., Ferreira, L. F., Borges, S. V., Souza Nascimento, B., Cotta, A. A. C., & Dias, M. V. (2024). Biodegradation, Water sorption isotherms and thermodynamic properties of extruded packaging composed of cassava starch with tomato peel. Journal of Polymers and the Environment, 32(5), 2221-2238. https://doi.org/10.1007/s10924-023-03094-4

Silva, K. S., Polachini, T. C., Luna-Flores, M., Luna-Solano, G., Resende, O., & Telis Romero, J. (2021). Sorption isotherms and thermodynamic properties of wheat malt under storage conditions. Journal of Food Process Engineering, 44(9), 1-12. https://doi.org/10.1111/jfpe.13784

Siqueira, V. C., Resende, O., & Chaves, T. H. (2012). Drying kinetics of Jatropha seeds. Revista Ceres, 59(2), 171-177. https://doi.org/10.1590/S0034-737X2012000200004

Siqueira, V. C., Silva, F. P., Quequeto, W. D., Jordan, R. A., Leite, R. A., & Mabasso, G. A. (2018). Desorption isotherms and isosteric heat of niger grains (Guizotia abyssinica (L. f.) Cass.). Revista Agro@mbiente On-line, 12(2), 124-133. https://doi.org/10.18227/1982-8470ragro.v12i2.4908

Statsoft Inc. (1999). Statistica for Windows - computer program manual. StatSoft.

Su, X., Lu, G., Ye, L., Shi, R., Zhu, M., Yu, X., Li, Z., Jia, Z., & Feng, L. (2023). Moringa oleifera Lam.: A comprehensive review on active components, health benefits and application. RSC Advances, 13(35), 24353-24384. https://doi.org/10.1039/D3RA03584K

Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In G. V. Barbosa-Cánovas, A. J. J. R. Fontana, S. J. Schmidt, & T. P. Labuza (Eds.), Water activity in foods: fundamentals and applications (pp. 323-355). John Wiley & Sons. https://doi.org/10.1002/9781118765982.ch14

Teixeira, L. P., Andrade, E. T., & Devilla, I. A. (2018). Isosteric heat, entropy, and gibbs free energy of pumpkin seeds (Cucurbita moschata). Engenharia Agrícola, 38(1), 97-102. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p97-102/2018

Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying – A new model. Transaction of the ASAE, 11(4), 582-586. https://doi.org/10.13031/2013.39473

Tshabalala, T., Ncube, B., Madala, N. E., Nyakudya, T. T., Moyo, H. P., Sibanda, M., & Ndhlala, A. R. (2019). Scribbling the cat: a case of the “miracle” plant, Moringa oleifera. Plants, 8(11), 1-23. https://doi.org/10.3390/plants8110510

Van Den Berg, C. (1984). Description of water activity of foods for engineering purposes by means of the GAB model of sorption. In B. M. McKenna (Ed.), Engineering science in the food industry (pp. 311-321). Elsevier.

Xing, T., Luo, X., Li, M., Wang, Y., Deng, Z., Yao, M., Zhang, W., Zhang, Z., & Gao, M. (2023). Study on drying characteristics of Gentiana macrophylla under the interaction of temperature and relative humidity. Energy, 273, 127261. https://doi.org/10.1016/j.energy.2023.127261

Zeymer, J. S., Corrêa, P. C., Oliveira, G. H. H., Araujo, M. E. V., Guzzo, F., & Baptestini, F. M. (2023). Moisture sorption isotherms and hysteresis of soybean grains. Acta Scientiarum. Agronomy, 45(1), 1-11. https://doi.org/10.4025/actasciagron.v45i1.56615

Zhu, G., Jin, Q., Liu, Y., Lin, Y., Wang, J., & Li, X. (2021). Moisture sorption and thermodynamic properties of Camellia oleifera seeds as influenced by oil content. International Journal of Agricultural and Biological Engineering, 14(1), 251-258. https://doi.org/10.25165/j.ijabe.20211401.5457

Publicado
2025-10-21
Como Citar
Padilla, J. R. R., Andrade, E. T. de, Araújo, B. L. O., Rios, P. de A., & Oliveira, F. da S. de. (2025). Hygroscopicity and thermodynamic properties of grains of Moringa oleifera L. Acta Scientiarum. Agronomy, 48(1), e73552. https://doi.org/10.4025/actasciagron.v48i1.73552
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus