Nitrogen fertilization, fungicide application, and genetic resistance for the management of diseases on wheat

  • Andrea Román Ramos Universidade Federal de Pelotas / Universidade Estadual de Bolívar
  • Daniel Debona Universidade Tecnológica Federal do Paraná
  • Eduardo Rodríguez Maldonado Universidade Estadual de Bolívar / Grow Green Agricultural Technologies
  • Leandro José Dallanol Universidade Federal de Pelotas https://orcid.org/0000-0002-2131-4944
Palavras-chave: mineral nutrition; disease control; nitrogen use efficiency; fungicide mixture; sustainable disease management.

Resumo

Nitrogen (N) fertilization is a common practice to increase grain yield worldwide. This study aimed to determine the effects of three N rates (70, 130, and 200 kg ha−1, referred to as low, recommended, and high, respectively) and a pre-mix fungicide (bixafen + prothioconazole + trifloxystrobin) on the disease intensity and grain yield of 2 early-maturing wheat cultivars named as TBIO Audaz and TBIO Tibagi. Two field experiments were conducted during the 2019 and 2020 growing seasons using the split–split plot design. Tan spot, powdery mildew, leaf rust, and Fusarium head blight (FHB) were the primary diseases observed. The recommended and high N rates reduced the area under the disease progress curve (AUDPC) for tan spot. However, the AUDPC for powdery mildew increased with high N for both cultivars, but N rates did not affect leaf rust or FHB. The use of early maturing wheat cultivars did not prevent the occurrence of FHB damage, except on plants from cultivar TBIO Audaz known to be moderately resistant. When combined with N fertilization, fungicide application reduced the AUDPC for tan spot, powdery mildew, leaf rust, and FHB by 31, 33, 75, and 40%, respectively, compared to the non-treated control. The cultivar × fungicide and cultivar × N interactions were significant (p < 0.05) for AUDPCs and yield variables. Both the recommended and high N rates similarly increased the yield, health area duration, and tan spot control at the same level compared to the low N rate. These findings combined with economic and cost-efficiency analyses suggest that using a moderately resistant cultivar with recommended N rates help to maintain adequate N use efficiency and economic returns to growers.

Downloads

Não há dados estatísticos.

Referências

AGROLINK. (2021a). Cotações de grãos. https://www.agrolink.com.br/cotacoes/graos/trigo/

AGROLINK. (2021b). Trigo em grão nacional Sc 60 kg. https://www.agrolink.com.br/cotacoes/historico/rs/trigo-em-grao-nacional-sc-60kg

American Association of Cereal Chemists. (2010). Approved Methods of Analysis (11th ed.). Cereals & Grains Association. http://methods.aaccnet.org/toc.aspx

Barro, J., Santana, F. M., Duffeck, M. R., Machado, F. J., Lau, D., Sbalcheiro, C. C., Schipanski, C., Chagas, D. F., Venancio, W. S., Dallagnol, L. J. Guterres, C. W., Kuhnem, P., Feksa, H. R., & Del Ponte, E. M. (2021). Are DMI+ QoI fungicide premixes during flowering worthwhile for fusarium head blight control in wheat? A Meta-analysis. Plant Disease, 105(9), 2680-2687. https://doi.org/10.1094/PDIS-09-20-2096-RE.

Bertagnolli, V. V., Ferreira, J. R., Liu, Z., Rosa, A. C., & Deuner, C. C. (2019). Phenotypical and genotypical characterization of Pyrenophora tritici-repentis races in Brazil. European Journal of Plant Pathology, 154, 995-1007. https://doi.org/10.1007/s10658-019-01720-3

Blandino, M., & Reyneri, A. (2009). Effect of fungicide and foliar fertilizer application to winter wheat at anthesis on flag leaf senescence, grain yield, flour bread-making quality and DON contamination. European Journal of Agronomy, 30(4), 275-282. https://doi.org/10.1016/j.eja.2008.12.005

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624.

Castro, A. C., Fleitas, M. C., Schierenbeck, M., Gerard, G. S., & Simón, M. R. (2018). Evaluation of different fungicides and nitrogen rates on grain yield and bread-making quality in wheat affected by Septoria tritici blotch and yellow spot. Journal of Cereal Science, 83, 49-57. https://doi.org/10.1016/j.jcs.2018.07.014

Companhia Nacional de Abastecimento. (2021a). Acompanhamento da Safra Brasileira de Grãos, v. 8, safra 2020/21, n. 5, quinto levantamento, fev. 2021. CONAB.

Companhia Nacional de Abastecimento. (2021b). Série histórica-custos-trigo-1998 a 2021. CONAB. https://www.conab.gov.br/info-agro/custos-de-producao/planilhas-de-custo-de-producao/itemlist/category/828-trigo

Cruz, M. F. A., Silva, L. A. F., Rios, J. A., Debona, D., & Rodrigues, F. Á. (2015). Microscopic aspects of the colonization of Pyricularia oryzae on the rachis of wheat plants supplied with silicon. Bragantia, 74(2), 207-214. https://doi.org/10.1590/1678-4499.0023

Datnoff, L. E., Elmer, W. H., & Rodrigues, F. A. (2023). Mineral nutrition and plant disease. APS Press.

Debona, D., Rodrigues, F. Á., Rios, J. A., & Nascimento, K. J. T. (2012). Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology, 102(12), 1121-1129. https://doi.org/10.1094/PHYTO-06-12-0125-R

Del Ponte, E. M., Fernandes, J. M. C., & Bergstrom, G. C. (2007). Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 155(10), 577-581. https://doi.org/10.1111/j.1439-0434.2007.01281.x

Del Ponte, E. M., Fernandes, J. M. C., Pavan, W., & Baethgen, W. E. (2009). A model‐based assessment of the impacts of climate variability on fusarium head blight seasonal risk in Southern Brazil. Journal of Phytopathology, 157(11‐12), 675-681. https://doi.org/10.1111/j.1439-0434.2009.01559.x

Dixon, R. A., Achnine, L., Kota, P., Liu, C.-J., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence—a genomics perspective. Molecular Plant Pathology, 3(5), 371-390. https://doi.org/10.1046/j.1364-3703.2002.00131.x

Dorneles, K. R., Dallagnol, L. J., Pazdiora, P. C., Rodrigues, F. A., & Deuner, S. (2017). Silicon potentiates biochemical defense responses of wheat against tan spot. Physiological and Molecular Plant Pathology, 97, 69-78. https://doi.org/10.1016/j.pmpp.2017.01.001

Dorneles, K. R., Pazdiora, P. C., Hoffmann, J. F., Chaves, F. C., Monte, L. G., Rodrigues, F. A., & Dallagnol, L. J. (2018). Wheat leaf resistance to Pyrenophora tritici-repentis induced by silicon activation of phenylpropanoid metabolism. Plant Pathology, 67(8), 1713-1724. https://doi.org/10.1111/ppa.12876

Faris, J. D., Abeysekara, N. S., McClean, P. E., Xu, S. S., & Friesen, T. L. (2012). Tan spot susceptibility governed by the Tsn1 locus and race-nonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Molecular Breeding, 30, 1669-1678. https://doi.org/10.1007/s11032-012-9750-7

Fernandez, M. R., Wang, H., Cutforth, H., & Lemke, R. (2016). Climatic and agronomic effects on leaf spots of spring wheat in the western Canadian prairies. Canadian Journal of Plant Science, 96(5), 895-907. https://doi.org/10.1139/cjps-2015-0266

Fleitas, M. C., Schierenbeck, M., Gerard, G. S., Dietz, J. I., Golik, S. I., & Simón, M. R. (2018). Breadmaking quality and yield response to the green leaf area duration caused by fluxapyroxad under three nitrogen rates in wheat affected with tan spot. Crop Protection, 106, 201-209. https://doi.org/10.1016/j.cropro.2018.01.004

Gaju, O., Allard, V., Martre, P., Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S., & Foulkes, M. J. (2014). Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Research, 155, 213-223. https://doi.org/10.1016/j.fcr.2013.09.003

Gilbert, J., & Haber, S. (2013). Overview of some recent research developments in Fusarium head blight of wheat. Canadian Journal of Plant Pathology, 35(2), 149-174. https://doi.org/10.1080/07060661.2013.772921

Hawkesford, M. J. (2014). Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 59(3), 276-283. https://doi.org/10.1016/j.jcs.2013.12.001

Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 655–656.

Huber, D., & Thompson, I. (2007). Nitrogen and plant disease. In L. Datnoff, W. Elmer, & D. Huber (Eds.), Mineral nutrition and plant disease (pp. 31-44). APS Press.

Kong, L., Xie, Y., Hu, L., Feng, B., & Li, S. (2016). Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Field Crops Research, 196, 134-144. https://doi.org/10.1016/j.fcr.2016.06.015

Kutcher, H. R., Turkington, T. K., McLaren, D. L., Irvine, R. B., & Brar, G. S. (2018). Fungicide and cultivar management of leaf spot diseases of winter wheat in western Canada. Plant Disease, 102(9), 1828-1833. https://doi.org/10.1094/PDIS-12-17-1920-RE

Machado, F. J., Santana, F. M., Lau, D., & Del Ponte, E. M. (2017). Quantitative review of the effects of triazole and benzimidazole fungicides on Fusarium head blight and wheat yield in Brazil. Plant Disease, 101(9), 1633-1641. 10.1094/PDIS-03-17-0340-RE

MacLean, D. E., Lobo, J. M., Coles, K., Harding, M. W., May, W. E., Peng, G., Turkington, T. K., & Kutcher, H. R. (2018). Fungicide application at anthesis of wheat provides effective control of leaf spotting diseases in western Canada. Crop Protection, 112, 343-349. https://doi.org/https://doi.org/10.1016/j.cropro.2018.06.019

Maillard, A., Diquélou, S., Billard, V., Laîné, P., Garnica, M., Prudent, M., Garcia-Mina, J.-M., Yvin, J.-C., & Ourry, A. (2015). Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Frontiers in Plant Science, 6(317), 1-15. https://doi.org/10.3389/fpls.2015.00317

Malhi, S. S., Grant, C. A., Johnston, A. M., & Gill, K. S. (2001). Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review. Soil and Tillage Research, 60(3-4), 101-122. https://doi.org/10.1016/S0167-1987(01)00176-3

Meena, S. K., Rakshit, A., & Meena, V. S. (2016). Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatalysis and Agricultural Biotechnology, 6, 68–75.

Miralles, D. J., & Slafer, G. A. (1990). Estimación del área foliar en trigo: Generación y validación de un modelo. In 11º Congreso Nacional de Trigo (Cap. I, pp. 76–85). Pergamino.

Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K., & Gupta, K. J. (2017). Moving nitrogen to the centre of plant defence against pathogens. Annals of Botany, 119(5), 703-709. https://doi.org/https://doi.org/10.1093/aob/mcw179

Pazdiora, P. C., Dorneles, K. R., Forcelini, C. A., Del Ponte, E. M., & Dallagnol, L. J. (2018). Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis. European Journal of Plant Pathology, 150(1), 49-56. https://doi.org/https://doi.org/10.1007/s10658-017-1251-4

Pazdiora, P. C., Dorneles, K. R., Morello, T. N., Nicholson, P., & Dallagnol, L. J. (2021). Silicon soil amendment as a complement to manage tan spot and Fusarium head blight in wheat. Agronomy for Sustainable Development, 41(2), 1-13. https://doi.org/10.1007/s13593-021-00677-0

Perrin, R. K., Winkelmann, D. L., Moscardi, E. R., & Anderson, J. R. (1979). From agronomic data to farmer recommendations: An economics training manual. CIMMYT. (Information Bulletin No. 27).

Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26C(5), 496–500. https://doi.org/10.1139/cjr48c-033

Reis, E. M., Blum, M. M. C., & Casa, R. T. (1996). Controle químico de Gibberella zeae em trigo, um problema de deposição de fungicidas em anteras. Summa Phytopathologica, 22, 39-42.

Reunião da Comissão Brasileira de Pesquisa de Trigo e Triticale. (2018). Informações técnicas para trigo e triticale - safra 2019. XII Reunião da Comissão Brasileira de Pesquisa de Trigo e Triticale. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1108443/informacoes-tecnicas-para-trigo-e-triticale---safra-2019.

Román Ramos, A. E., Aucique-Perez, C. E., Debona, D., & Dallagnol, L. J. (2024). Nitrogen and Silicon Contribute to wheat defense’s to Pyrenophora tritici-repentis, but in an independent manner. Plants, 13(11), 1-14. https://doi.org/10.3390/plants13111426

RStudio. (2021). RStudio: Integrated development environment for R. RStudio, PBC. http://www.rstudio.com/

Ruske, R. E., Gooding, M. J., & Jones, S. A. (2003). The effects of adding picoxystrobin, azoxystrobin and nitrogen to a triazole programme on disease control, flag leaf senescence, yield and grain quality of winter wheat. Crop Protection, 22(7), 975-987. https://doi.org/10.1016/S0261-2194(03)00113-3

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y

Schierenbeck, M., Fleitas, M. C., & Simón, M. R. (2019b). Nitrogen fertilization and fungicide mixtures in wheat: how do they affect the severity, yield and dynamics of nitrogen under leaf rust infections?. European Journal of Plant Pathology, 155(4), 1061-1075. https://doi.org/10.1007/s10658-019-01832-w

Schierenbeck, M., Fleitas, M. C., Gerard, G. S., Dietz, J. I., & Simón, M. R. (2019a). Combinations of fungicide molecules and nitrogen fertilization revert nitrogen yield reductions generated by Pyrenophora tritici-repentis infections in bread wheat. Crop Protection, 121, 173-181. https://doi.org/10.1016/j.cropro.2019.04.004

Schierenbeck, M., Fleitas, M. C., Miralles, D. J., & Simón, M. R. (2016). Does radiation interception or radiation use efficiency limit the growth of wheat inoculated with tan spot or leaf rust? Field Crops Research, 199, 65-76. https://doi.org/10.1016/j.fcr.2016.09.017

Sermeño, J., Rivas, A., & Menjívar, R. (2001). Manual tecnico manejo integrado de plagas. MAG-OIRSA-UES. http://usi.earth.ac.cr/glas/sp/Oirsa/50000083.pdf

Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67(8), 1051-1056.

Silva, S. R., Bassoi, M. C., & Foloni, J. S. S. (2017). Informações técnicas para trigo e tricale- safra 2017. Embrapa. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/155787/1/Informacoes-Tecnicas-para-Trigo-e-Triticale-Safra-2017-OL.pdf

Simón, M. R., Fleitas, M. C., Castro, A. C., & Schierenbeck, M. (2020). How foliar fungal diseases affect nitrogen dynamics, milling and end-use quality of wheat. Frontiers in Plant Science, 11(1568), 1-23. https://doi.org/10.3389/fpls.2020.569401

Stack, R. W., & McMullen, M. P. (2011). A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota State University. [Technical report]. https://www.ag.ndsu.edu/ndipm/publications/wheat/documents/pp1095.pdf

Thomas, H., & Howarth, C. J. (2000). Five ways to stay green. Journal of Experimental Botany, 51(Suppl. 1), 329–337. https://doi.org/10.1093/jexbot/51.suppl_1.329

Waggoner, P. E., & Berger, R. D. (1987). Defoliation, disease, and growth. Phytopathology, 77(3), 393–398. https://doi.org/10.1094/Phyto-77-393

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Publicado
2025-10-21
Como Citar
Ramos, A. R., Debona, D., Maldonado, E. R., & Dallanol, L. J. (2025). Nitrogen fertilization, fungicide application, and genetic resistance for the management of diseases on wheat. Acta Scientiarum. Agronomy, 48(1), e74058. https://doi.org/10.4025/actasciagron.v48i1.74058
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus