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ABSTRACT. The main objective of this study was to compare the goodness of fit of five non-linear 
growth models, i.e. Brody, Gompertz, Logistic, Richards and von Bertalanffy in different animals. It also 
aimed to evaluate the influence of the shape parameter on the growth curve. To accomplish this task, 
published growth data of 14 different groups of animals were used and four goodness of fit statistics were 
adopted: coefficient of determination (R2), root mean square error (RMSE), Akaike information criterion 
(AIC) and Bayesian information criterion (BIC). In general, the Richards growth equation provided better 
fits to experimental data than the other models. However, for some animals, different models exhibited 
better performance. It was obtained a possible interpretation for the shape parameter, in such a way that can 
provide useful insights to predict animal growth behavior. 
Keywords: body weight gain, Richards model, goodness of fit. 

Avaliação comparativa de modelos matemáticos não lineares para descrever o crescimento 
animal 

RESUMO. O principal objetivo deste estudo foi comparar a qualidade do ajuste de cinco modelos 
matemáticos recorrentemente utilizados na literatura para a descrição do ganho de peso animal. Ele 
também teve o objetivo de estudar a influência do parâmetro de forma sobre as curvas de crescimento. Os 
modelos de Brody, Gompertz, Logístico, von Bertalanffy e Richards, foram ajustados a dados experimentais 
de 14 grupos de animais diferentes. Como critério de qualidade de ajuste quatro índices estatísticos foram 
adotados: coeficiente de determinação (R2), raiz do quadrado médio do erro (RMSE) e os critérios de 
informação, Akaike (AIC) e Bayesian (BIC). Em geral, o modelo de Richards forneceu os melhores ajustes 
aos dados experimentais comparados aos demais modelos. No entanto, para alguns animais, diferentes 
modelos exibiram melhor desempenho. Foi possível obter uma possível interpretação para o significado do 
parâmetro de modo a fornecer ferramentas úteis para prever o comportamento do crescimento animal. 
Palavras-chave: ganho de peso animal, modelo de Richards, qualidade de ajuste. 

Introduction 

Traditionally, mathematical models have been 
applied to describe growth-age relationship in 
animals. One important feature of these models is 
their ability to describe the weight gain and evaluate 
some interesting biological parameters, such as the 
mature weight, the rate of maturing and the rate of 
gain. These parameters are useful tools to provide 
estimates of the daily feed requirements or to 
evaluate the influence of the environmental 
conditions on the weight gain of the animal. Growth 
models are also used to predict the optimum 
slaughter age. Therefore, mathematical models 
applied for animal growth can be considered as 
being important control and optimization 
instruments for the animal production (France & 

Thornley, 1984; France, Dijkstra, & Dhanoa, 1996; 
López et al., 2000; Vázquez, Lorenzo, Fuciños, & 
Franco, 2012). 

An appropriate growth function should 
summarize the information provided by 
experimental observations into a small set of 
parameters with biological meaning. Usually, these 
models consist of nonlinear functions and several 
studies including different mathematical models can 
be found in the literature. These models are usually 
applied for the evaluation of the growth kinetics of a 
wide range of animals, including birds (Aggrey, 
2002; Sezer & Tarhan, 2005; Nahashon, Aggrey, 
Adefope, Amenyenu, & Wright, 2006), mammals 
(Curi, Nunes, & Curi, 1985; Silva, Alencar, Freitas, 
Packer, & Mourão, 2011; Franco et al., 2011), fishes  
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(Hernandez-Llamas & Ratkowsky, 2004; Santos, 
Mareco, & Silva, 2013), reptiles (Bardsley, 
Ackerman, Bukhari, Deeming, & Ferguson, 1995) 
and amphibians (Rodrigues et al., 2007; Mansano, 
Stéfani, Pereira, & Macente, 2013). Some 
mathematical functions commonly used in these 
studies include the Gompertz, Logistic, Brody, von 
Bertalanffy and Richards growth models (France  
et al., 1996).  

The growth functions can be grouped into three 
main categories: those with a diminishing returns 
behavior (Brody model), those with sigmoidal shape 
and a fixed inflection point (Gompertz, Logistic and 
von Bertalanffy models) and those with a flexible 
inflection point (Richards model). The Logistic, 
Gompertz and von Bertalanffy models exhibit 
inflection points at about 50, 37 and 30% of the 
mature weight (asymptote), respectively. On the 
other hand, the Brody model does not exhibit an 
inflection point. The Richards model summarizes 
all the above growth functions in one function with 
a variable inflection point specified by the shape 
parameter (m) (Richards, 1959). 

In this context, the aim of this study was to 
evaluate the influence of the shape parameter on 
growth curves and the five above mentioned 

models using experimental data of different 
animals, including mammals and birds, in order 
to identify the best growth model for each animal 
studied. The performance of the different models 
was compared using different goodness of fit 
statistics. 

Material and methods 

Experimental data 

Growth data recorded for fourteen different 
datasets, all of them reported in the literature, 
were used for evaluation of the models. The raw 
growth data were collected from published 
articles by means of the GetData Graph Digitizer 
2.24 software, as used by Vázquez, Lorenzo, 
Fuciños, and Franco (2012). The datasets are 
representative of the gain of body weight of 
mammals and birds (Table 1), with mature 
weights ranging from < 0.25 kg (Japanese quail) 
to > 1,000 kg (Holstein-Friesian bull). As usually 
adopted in similar studies, growth curves were 
based on means of weights of many individuals in 
order to minimize large variations that may occur 
in individual growth (López et al., 2000; Vázquez 
et al., 2012). 

Table 1. Data sets used in this study to evaluate five different growth models. 

Data set Source 

Holstein-Friesian bulla 
Calo, Mcdowell, Vanvleck, and Miller, 1973 

Table 1. Means and standard deviations for body weight, growth rates and degree of maturity of Holstein-Friesian bulls from 6 
months to 8 years of age. 

Nelore cowb 
Silva, Alencar, Freitas, Packer, and Mourão, 2011 

Figure 1. A) Estimation of weights based on age of Nelore females, observed and estimated by the models of Brody and von 
Bertalanffy. 

Angus cowb 
Beltrán, Butts, Olson, and Koger, 1992 

Figure 1. Growth curves of Lines A and K estimated with Brody model. Line least squares means for weight at fixed ages are 
used as reference for goodness of fit. 

Celta pigb  
(male and female) 

Franco et al., 2011 
Figure 2. Growth curve for males and females of the variety Barcina slaughtered at 14 months. 

Karagouniko sheepb 

(male and female) 

Goliomytis, Orfanos, Panopoulou, and Rogdakis, 2006 
Figure 1. Growth curve and absolute growth rate for body weight of the Karagouniko male sheep: estimate growth curve; 

observed mean; estimated absolute growth rate. 
Figure 2. Growth curve and absolute growth rate for body weight of the Karagouniko female sheep: estimate growth curve; 

observed mean; estimated absolute growth rate. 
Beetal goata 

(male and female) 
Waheed, Khan, Ali, and Sarwar, 2011 

Table 1. Means (kg) and standard deviations (SD) of growth traits of Beetal goats. 

New Zealand rabbita 

Californian rabbita 

Norfolk rabbita 

Curi, Nunes, and Curi, 1985 
Table 2. Body weight of Norkfolk rabbit. 

Table 3. Body weight of Californian rabbit. 
Table 4. Body weight of New Zealand rabbit. 

Athens-Canadian chickena 

(male and female) 
Aggrey, 2002 

Table 1. Means and standard deviations for body weight at different ages in Athens-Canadian random-bred chickens. 
Guinea fowla 

(male and female) 
Nahashon, Aggrey, Adefope, Amenyenu, and Wright, 2006 

Table 2. Means and standard for body weight at different ages in a random-bred pearl guinea fowl population. 
Japanese quail – white linea 

(male and female) 
Japanese quail – brown linea 

(male and female) 
Japanese quail – wild linea 

(male and female) 

Sezer and Tarhan, 2005 
Table 1. The results of statistical analyses for body weight of Japanese quail lines at different age (means ± standard errors). 

aExperimental data reported in the literature; bExperimental data taken from published figures by means of GetData Graph Digitizer 2.24. 
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Mathematical models 

Five nonlinear functions frequently used for the 
description of growth curves in animal production 
studies were analyzed: Brody, von Bertalanffy, 
Logistic, Gompertz, and Richards. The 
mathematical expressions associated to these 
functions are detailed in Table 2. In all equations 
presented, W stands for the body weight of the 
animal at age t, ∞W  stands for the mature weight 
(asymptote) and W0 stands for the birth weight. The 
parameter k is a constant that is directly related to 
the postnatal rate of maturing and can be interpreted 
as a maturing index, establishing the rate at which W 
approaches ∞W . Finally, m is the shape parameter in 
Richards’ model. It determines the proportion of the 
mature weight at which the inflection point occurs 
(Perroto, Cue, & Lee, 1992; Gbangboche, Glele-
kakai, Salifou, Albuquerque, & Leroy, 2008). 

Table 2. Equations used to model the animal growth data. 

Model Equation 

Brody ( )0( )  1 1 expWW t W kt
W∞

∞

   
= + − −   

    
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von Bertalanffy ( )
31/3
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∞

  
= −  

  
 (4)

Richards ( )
0
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( )
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W WW t
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(5)

Richards’ model is a generalization of all growth 
models presented in Table 2, i.e., for m = -1,  
m = -1/3 and m = 1, it reduces to re-parameterized 
versions of Brody, von Bertalanffy and Logistic 
equations, respectively. In addition, it can be shown 
that it reduces to Gompertz model when one 
calculates 

0
lim ( )
m
W t

→
. The parameter m is the unique 

parameter which has no direct biological meaning. 
However, it exerts great influence on the time to an 
individual to reach the mature weight and on the 
point of inflection of the growth curve, as will be 
shown in the next section.  

Influence of the shape parameter (m) on growth curves 

As previously mentioned, Richards growth model 
encompasses all the other models, for special values of 
the parameter m. In order to illustrate this important 
feature, it is adopted a procedure to present a possible 
meaning to this parameter. After some algebra, it is 
possible to obtain a mathematical expression describing 
the influence of the parameter m on the relation of the 
weight at the inflection point ( infW ) to the asymptotic 
mature weight ( ∞W ) in equation 6: 

 

( )
inf 1

1 m

W
W m∞

=
+

 (6)

 
Figure 1 presents simulations obtained with the use 

of equation 6 for different values of the parameter m. 

In all simulations performed, the values of W0 and ∞W  
adopted were kept constant and equal to 10 g, and  
150 g, respectively, and the values of k  adopted were  
-0.0142 d-1 for Brody, -0.0445 d-1 for von Bertalanffy,  
-0.0739 d-1 for Gompertz and -0.2143 d-1 for Logistic 
model. The parameter m is the main responsible for 
the different shapes of the curves. 

 

 
Figure 1. The influence of the parameter m on the inflection point of each growth curve: Brody (m = -1), von Bertalanffy (m = -1/3), 
Gompertz (m = 0), and Logistic (m = 1). The dots indicate the inflection points obtained for each growth model. 
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The weight at the inflection point is of 
significance because it is associated with a change in 
the acceleration of growth: for values  of  the  weight 
lower than infW , the acceleration of growth is 
positive and for values the weight higher than infW  
the acceleration of growth is negative. Thus, 
depending on the value of m, the time to the 
individual reaches the mature weight is lower, as 
observed for the Brody growth model. 

Numerical method 

The fitting procedures presented in this study 
were performed with the ‘fit function’ of the Curve 
Fitting Tool available in the Matlab R2011a software 
(MathWorks, Natick, USA), using the nonlinear 
least squares method. The starting value of each 
parameter model was based on visual inspection of 
the plots. 

Statistical criteria for model selection 

The performance of each model was  
evaluated by the calculation of the root mean  
square error, RMSE (Equation 7), and by the 
coefficient of determination, R2 (Equation 8). In these 
expressions, expW  stands for the experimental data, 

calW  stands for the result fitted by the model, N 
represents the total number of experimental points, 
and K corresponds to the number of parameters of 
the model. 

 
2
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In order to obtain a more complete evaluation of 

the performance of the models, two additional 
criteria based on the information theory were 
applied to compare the goodness of fit of the models 
(Burnham & Anderson, 2002): the Akaike 
information criterion (AIC) and the Bayesian 
information criterion (BIC). Equations 9 and 10 
present the corresponding mathematical expressions 
wherein SSE is the sum of the squared errors. 

 
( )log / 2AIC N SSE N K= +  (9)

 
( ) ( )log / logBIC N SSE N K N= +  (10)

 
For the case in that the sample size is smaller 

than the number of model parameters (N / K < 40), 

the AIC might not be accurate. Therefore the 
corrected AIC (AICc in Equation 11) was used in the 
present study (Burnham & Anderson, 2002): 

 
2 ( 1)

1c
K KAIC AIC
N K

+= +
− −

 (11)

Results and discussion 

Fit with the use of Richards growth model 

The growth curves obtained from regression 
analyses using Richards’ model are presented in 
Figure 2 for birds and in Figure 3 for mammals. 
Table 3 shows the values of the parameter m 
estimated from regression and the value of the 
proportion of the mature weight at which the 
inflection point occurs (Equation 6) for each growth 
curve studied. 

 

 
Figure 2. Birds growth kinetics fitted to the Richards’ model. 
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Figure 3. Mammals growth kinetics fitted to the Richards’ model. 

Table 3. Values of the parameter m estimated from regression 
analyses of Richards model and the relatives values of 

/infW W∞
estimated from Equation 6. 

Animal 
m inf( / )W W∞

Male Female 
Athens-Canadian chicken 0.0541 (37.76%) -0.0220 (36.38%) 
Guinea fowl 0.0798 (38.21%) -0.0760 (35.34%) 
Japanese quail – White line 0.3549 (42.49%) 0.2321 (40.69%) 
Japanese quail – Brown line 0.6151 (45.87%) 0.1761 (39.81%) 
Japanese quail – Wild line 0.2321 (40.69%) 0.2342 (40.72%) 
Beetal goat -0.5030 (24.91%) -0.7070 (17.61%) 
Karagouniko sheep 0.9436 (49.45%) 0.9642 (49.64%) 
Celta pig 1.0184 (50.18%) 0.5275 (44.79%) 
Norfolk rabbit -0.2130 (32.48%) 
Californian rabbit -0.0640(35.58%) 
New Zeland rabbit -0.1960 (32.85%) 
Holstein-Friesian Bull -0.2230 (32. 26%) 
Nelore cattle -1.2780 (no inflection point) 
Angus cattle -1.1070 (no inflection point) 
 

As summarized in Table 3, all regression analysis 
of the Richards’ model resulted in values of the 
parameter m lower or equal to one. This means that, 
for the animals studied, the inflection point at each 
growth curve is lower than 50% of the mature 
weight. In addition, it was observed that the value of 
m was lower than minus one only for two datasets 
(Nelore cattle and Angus cattle). This result seems 
to indicate that the Brody’s model is not feasible for 
most datasets studied. 

It was also observed that the values of m were, in 
general, lower for females than for males (with the 
exception of Japanese quail – wild line and 
Karagouniko sheep). Therefore it can be assumed 
that, for most datasets studied, the males reached the 
mature weight before the females. In addition, 
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according to Table 3, it can be seen that 
Karagouniko sheep and celta pigs reach the mature 
weight faster than the others. 

Comparison between models 

Tables 4, 5 and 6 summarize the goodness of fit 
statistics obtained for the five models studied. It was 
observed that for birds (Table 4), the Richards’ and 
Logistic models provided the best fits. On the other 
hand, in what concerns mammals, different models 
provided best fits for different datasets. In this case, 
it was not possible to establish a model as being 
superior in relation to the others. 

Table 4. Goodness of fit statistics obtained from the growth 
models applied to the experimental data set of birds. Equations 
with the best goodness of fit are represented in bold. 

Animal 
Growth models (Male) Growth models (Female) 

Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5) Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5)
Athens-Canadian chicken 

R2 0.9860 0.9983 0.9964 0.9993 0.99930.9879 0.9976 0.9950 0.99820.9982
RMSE 91.11 31.62 45.98 20.76 20.95 63.44 27.99 40.77 24.12 24.61
BIC 112.70 86.962 96.066 76.727 77.903103.89 83.995 93.144 80.38981.820
AICC 115.35 89.620 98.725 79.385 81.853106.55 86.654 95.802 83.04885.770

Guinea fowl 
R2 0.9841 0.9982 0.9967 0.9991 0.99920.9869 0.9977 0.9945 0.99800.9981
RMSE 72.48 24.16 32.99 16.85 16.98 66.88 28.07 43.10 25.83 26.32
BIC 88.259 66.310 72.536 59.110 60.12486.654 69.309 77.876 67.65068.869
AICC 91.437 69.488 75.714 62.288 64.89989.832 72.487 81.054 70.82873.644

Japanese quail – White line 
R2 0.9840 0.9974 0.9986 0.9991 0.99960.9886 0.9979 0.9980 0.99900.9992
RMSE 8.701 3.527 2.596 2.046 1.391 8.482 3.64 3.596 2.515 2.364
BIC 34.203 20.871 16.342 12.828 7.816 33.827 21.337 21.154 15.88015.646
AICC 38.358 25.025 20.497 16.983 14.22737.981 25.492 25.309 20.03522.058

Japanese quail – Brown line 
R2 0.9814 0.9961 0.9994 0.9984 0.99970.9870 0.9979 0.9975 0.99870.9988
RMSE 8.957 4.120 1.667 2.636 1.233 8.867 3.603 3.870 2.817 2.818
BIC 34.631 23.163 9.804 16.573 6.038 34.482 21.185 22.241 17.54818.238
AICC 38.785 27.318 13.959 20.727 12.44938.637 25.340 26.396 21.70324.650

Japanese quail – Wild line 
R2 0.9886 0.9979 0.9980 0.9990 0.99920.9881 0.9965 0.9966 0.99750.9976
RMSE 8.482 3.640 3.596 2.515 2.364 8.867 4.835 4.770 4.104 4.122
BIC 33.827 21.337 21.154 15.880 15.64634.483 25.526 25.329 23.10923.854
AICC 37.981 25.492 25.309 20.035 22.05838.638 29.681 29.484 27.26330.266
 

Table 5. Goodness of fit statistics obtained from the growth 
models applied to the experimental data set of mammals. 
Equations with the best goodness of fit are represented in bold. 

Animal 
Growth models (Male) Growth models (Female) 

Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5) Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5)
Beetal goat 

R2 0.9969 0.99780.9938 0.9972 0.9979 0.9992 0.9991 0.9943 0.9983 0.9995
RMSE 0.3948 0.33340.5632 0.3749 0.3445 0.1845 0.1944 0.4953 0.2733 0.1523

BIC -8.632 -10.54 -4.622 -9.216 -9.654 -
17.222 -16.63 -6.074 -

12.786 -18.87

AICC -3.308 -5.217 0.703 -3.891 -1.110 -
11.897 -11.30 -0.749 -7.462 -10.32

Karagouniko sheep 
R2 0.9623 0.9693 0.9728 0.9711 0.9728 0.9456 0.9501 0.9520 0.9511 0.9520
RMSE 6.223 5.611 5.289 5.447 5.488 5.616 5.380 5.278 5.326 5.477
BIC 29.253 27.725 26.851 27.288 28.081 27.737 27.105 26.821 26.956 28.051
AICC 33.408 31.880 31.006 31.443 34.492 31.892 31.260 30.975 31.111 34.462

Celta pig 
R2 0.9825 0.9920 0.9962 0.9942 0.9962 0.9841 0.9946 0.9970 0.9966 0.9975
RMSE 6.479 4.376 3.014 3.746 3.092 5.607 3.239 2.438 2.601 2.297
BIC 40.019 32.179 24.730 29.072 26.093 37.131 26.167 20.495 21.789 20.153
AICC 43.197 35.357 27.908 32.250 30.868 40.309 29.345 23.673 24.967 24.929

Table 6. Goodness of fit statistics obtained from the growth 
models applied to the experimental data set of mammals. 
Equations with the best goodness of fit are represented in bold. 

Animals 
Growth models 

Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5) 
Norfolk rabbit 

R2 0.9925 0.9991 0.9950 0.9990 0.9992 
RMSE 106.8 37.30 87.57 39.84 36.83 
BIC 75.373 58.922 72.266 59.953 59.444 
AICc 79.322 62.870 76.214 63.901 65.500 

Californian rabbit 
R2 0.9882 0.9972 0.9943 0.9976 0.9976 
RMSE 110.6 53.98 77.26 49.91 51.45 
BIC 75.917 64.701 70.307 63.477 64.667 
AICc 79.866 68.650 74.255 67.425 70.723 

New Zeland rabbit 
R2 0.9909 0.9985 0.9942 0.9984 0.9986 
RMSE 103.3 42.07 82.27 43.15 41.88 
BIC 74.851 60.803 71.289 61.201 61.450 
AICC 78.799 64.752 75.238 65.150 67.506 

Holstein-Friesian Bull 
R2 0.9958 0.9988 0.9953 0.9986 0.9988 
RMSE 17.54 9.57 18.61 10.02 9.60 
BIC 67.549 53.886 68.892 54.910 54.872 
AICC 70.395 55.641 71.738 57.756 59.117 

Nelore cow 
R2 0.9912 0.9832 0.9641 0.9781 0.9922 
RMSE 14.84 20.55 30.01 23.41 14.81 
BIC 29.856 33.243 37.193 34.603 30.294 
AICC 35.6187 39.006 42.955 40.365 39.691 

Angus cow 
R2 0.9981 0.9921 0.9766 0.9878 0.9982 
RMSE 8.992 18.26 31.47 22.68 9.955 
BIC 14.188 18.497 21.804 19.813 14.778 
AICC 25.653 29.961 33.268 31.277 39.397 
 

Table 7 summarizes comparison between pairs of 
models used in this study. Each entry of this table 
accounts for the number of times that the equation of 
the corresponding row provided better fit than the 
other equations. It can be seen that Richards’ model 
exhibited a better performance than all the others. 

Table 7. Comparison between pairs of models used in this study. 

 Eq.(1) Eq.(2) Eq.(3) Eq.(4) Eq.(5) Total 
Eq.(1)  3 5 3 2 13 
Eq.(2) 19  13 7 5 44 
Eq.(3) 17 9  5 3 34 
Eq.(4) 19 15 17  9 60 
Eq.(5) 20 17 19 13  69 
 

As shown in Table 7, Logistic and Brody´s 
model (Equations 3 and 1, respectively) exhibited 
the worst results in relation to the other models, 
since they provided a lower amount of better fits 
than the others. These poor results obtained for the 
Logistic and the Brody’s model can be ascribed to 
the symmetry of the inflection point and to the 
hyperbolic shape of the model, respectively. In order 
to illustrate this behavior, Figure 4 shows residuals 
obtained after fits of Logistic, Brody and Gompertz 
equations to Athens-Canadian chickens. As can be 
seen, the residuals are larger and not normally 
distributed for the Logistic and Brody models in 
relation to the Gompertz growth model. 
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Figure 4. Fits and residuals obtained for the Logistic, Brody and Gompertz models to Athens-Canadian chickens. 

In general, it was also observed that all models 
under investigation in this study exhibited high R2 
values (above 0.94), suggesting overall good fits to 
the data. According to R2 values the Richards’ model 
provided better results. Theoretically, the four 
parameter Richards model, is expected to give a 
higher R2 than the three parameter models. 
However, due to the values of the shape parameter 
for some animals close to m = 0, m = -1/3, m = -1 
or m = 1, the R2 values are similar among Richards’ 
and the three parameters models (Tables 4, 5 and 6). 

The results obtained for Athens-Canadian 
chicken (m = 0.0541 for male and m = -0.0220 for 
female) and Guinea fowl (m  = 0.0798 for male and 
m = -0.0760 for female) seem to indicate that the 
Gompertz model is appropriate to experimental data 
as previously pointed out by Aggrey (2002) and 
Nahashon et al. (2006), respectively. For Japanese 
quail m  values showed deviations among lines and 
sex (Table 3). Only for the wild line, the parameter 
showed a similar value both for male (m = 0.2321) 
and female (m = 0.2342). The values of 

inf /W W∞
 

were between 0.39 and 0.46 for all Japanese quail 

lines. This justified that the statistical parameters 
indicated Richards’ model as the most appropriated 
followed by Gompertz model (Table 4). None of 
the three parameters models generated inflection 
points between 39 and 46% of the mature weight, 
and the Gompertz model produced the value closest 
to this range (37%). These results are in accordance 
with the study of Sezer and Tarhan (2005), which 
discussed in details the fit of Richards’ model to 
different lines of Japanese quail. 

Among the mammals studied, only Californian 
rabbit (m = -0.0640) seems to indicate Gompertz 
model as the best one. Curi et al. (1985) fitted 
Logistic and Gompertz models to rabbit data for 
three lines and found that the Gompertz model was 
better than the Logistic model. However, for 
Norfolk and New Zealand lines, the von Bertalanffy 
model was the most appropriated one  
(Tables 3 and 6). 

The results presented in Table 3 for 
Karagouniko sheep (m = 0.9436 for male and  
m = 0.9642 for female) and pig (m = 1.0184 for 
male) indicate Logistic model as the most 
appropriate. These animals showed the inflection 



80 Teleken et al. 

Acta Scientiarum. Animal Sciences Maringá, v. 39, n. 1, p. 73-81, Jan.-Mar., 2017 

point at growth curve close to 50% of the mature 
weight (Table 3). On the other hand, Gbangboche, 
Glele-kakai, Salifou, Albuquerque, and Leroy (2008) 
compared the goodness of fit of four non-linear 
growth models in West African Dwarf sheep and 
concluded that the Brody model provided the best 
fit.  

The appropriated models for Beetal goat were 
Brody model for male and Richards model for 
female (Table 5). Waheed et al. (2011) compared 
Brody and Gompertz models and concluded that 
both models efficiently explained the Beetal goat 
growth. An appropriated model for Beetal goat 
should exhibit an inflection point fixed close to 0.2 
of the mature weight (Table 3). 

Holstein-Friesian bull growth curve showed a m 
value equal to -0.223. Thus, the von Bertalanffy 
model could be a good choice for fitting the gain of 
body weight for this animal (Table 6). Vázquez  
et al. (2012) observed that this model was 
appropriate to describe the gain of the body weight 
of cattle. According to results obtained with 
Richards’ model (Table 3), Nelore and Angus cattle 
exhibit no inflection point (m < -1) at their growth 
curves. Statistical parameters indicated the use of 
Brody model for both species (Table 6). Silva  
et al. (2011) evaluated five non-linear models for the 
gain of weight for cows of different biological types 
and found that Richards’ and Brody models were 
the most appropriated for Nelore cow. Beltrán  
et al. (1992) evaluated growth patterns of two lines of 
Angus cow using Brody and Richards’ models and 
concluded that both models provided good results. 

Conclusion 

In general, all non-linear models demonstrated 
good capacities of fitting for describing the growth 
kinetics of several animals. Although the Richards 
model exhibited the highest R2 than the three 
parameters models, the two criteria based on the 
information theory, AIC and BIC, indicated that 
Gompertz model was the best model for chickens. 
In what concerns mammals, the Logistic model was 
the best model for pigs and sheep, von Bertalanffy 
for rabbits and bulls and when experimental data 
showed hyperbolic profiles, like cows and goats, the 
most appropriated model was the Brody equation. 
According to AIC and BIC criteria, the Richards’ 
model was the most appropriate only for Japanese 
quails, female pigs and female goats. However, it 
provided the best results in average when all animals 
studied were considered. The Richards’ model may 
be preferable for data based on a sigmoidal behavior, 
due to the fact that the placement of the inflection 

point is flexible. If a fixed inflection point is 
preferred, any placement is possible by substitution 
of the parameter m, for any given value above -1. 
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