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ABSTRACT. The objective of this study was to determine the genome association between markers of 
bovine LD BeadChip with dairy important traits. Information of breeding program of the Universidad 
Nacional de Colombia was used. BLUP-EBVs were used for dairy yield (DY), fat percentage (FP), protein 
percentage (PP) and somatic cell score (SCS). 150 animals were selected for blood or semen DNA 
extraction and genotyping with BovineLD BeadChip (Illumina). Autosomal information was retained and 
the editing information was performed using Plink v1.07 software. The effects of SNPs were determined 
by Bayes C with GS3 software. The minor allele frequency for most of the markers on the bead chip was 
high, which increases the probability of finding important loci segregating in the population. Estimations of 
fraction markers with an effect were close to zero in almost all cases. The most important markers were 
mapped by trait using ENSEMBL. A total of 6,510 autosomal SNPs were retained, out of which only a 
proportion with effect was taken from the mixed function of Bayes C. Important genes as ANKS1B, 
CLCN1, NMBR and CTSD, were found for each trait for AL, FP, PP and SCS respectively. Finally, Bayes 
C estimation allowed to identify specific SNPs possibly associated with QTLs. 
Keywords: dairy cattle; GWAS; QTLs, single nucleotide polymorphism. 

Associação genômica usando o método Bayes C para características importantes na 
produção leiteira em Gado Holandês na Colômbia. 

RESUMO. O Objetivo deste estudo foi determinar a associação genômica entre os marcadores do chip 
bovino LD (LD BeadChip) com características importantes na produção de leite. Foram utilizadas 
informações do programa de melhoramento genético da Universidade Nacional de Colômbia. BLUP-
EBVs foram utilizados para a produção de leite (DY), porcentagem de gordura (FP), porcentagem de 
proteína (PP) e escore de células somáticas (SCS). 150 animais foram selecionados para extração de DNA 
do sangue ou sêmen e genotipados com o chip BovineLD (Illumina). A informação autossômica foi mantida 
e a edição da informação foi executada usando o programa Plink v1.07. Os efeitos dos SNPs foram 
determinados por Bayes C com o programa GS3. A frequência do alelo menor para a maioria dos 
marcadores no chip foi alta, o que aumenta a probabilidade de encontrar locos importantes segregando na 
população. As estimativas da fração de marcadores, com efeito, foram próximas de zero em quase todas as 
situações. Os marcadores mais importantes foram mapeados com ENSEMBL. Um total de 6510 SNPs 
autossômicos foram preservados, dos quais apenas uma proporção foi tomada com efeito a partir da função 
mista de Bayes C. Para cada característica foram encontrados genes importantes, como ANKS1B, CLCN1, 
NMBR e CTSD, para AL, FP, PP e SCS, respectivamente. Finalmente, a estimativa de Bayes-C permitiu a 
identificação de SNPs com possível associação com QTLs. 
Palavras-chave: gado leiteiro; GWAS, QTLs; Polimorfismo de nucleotídeo único. 

Introduction 

The identification of millions of Single Nucleotide 
Polymorphisms (SNPs) in the bovine genome 
(Daetwyler et al.; 2014; Gibbs et al., 2009), along with 
the gradual reduction in genotyping and resequencing 
cost (Meuwissen & Goddard, 2010) have generated a 
real opportunity to use information from thousands of 
molecular markers for implementing the genomic  

selection. These advances have allowed association 
studies on a large scale, with the aim of strengthen 
breeding programs and improve understanding of the 
genetic variation of important traits in dairy yield 
(Daetwyler et al., 2014). 
Genomic selection has been implemented mainly 
with high density bead chips in different dairy cattle 
breeds around the world (VanRaden et al., 2009). 
This uses information from a large number of DNA 
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markers to estimate individuals breeding values 
based on Linkage Disequilibrium (LD) between a 
specific marker and the Quantitative Trait Locus 
(QTL) (Meuwissen, Hayes, & Goddard, 2001). 

Works based on Genome-Wide Association 
(GWAS), intend to identify markers, genomic 
regions, or causative mutations associated with 
productive traits, in order to improve the accuracy of 
estimated breeding values and the understanding of 
physiological processes and genetic architecture of 
dairy yield traits (Makowsky et al., 2011; Zhang  
et al., 2014). 

GWAS studies have used estimation 
methodologies based on least squares or Restricted 
Maximum Likelihood (REML) repeatedly, with 
different settings for inferring the significance of the 
SNP effects and map specific QTLs, to reduce the 
problem of false positives rate and overestimation 
effect. To alleviate some of these problems, different 
approaches have been raised, including Bayesians 
that can reduce the problem (Peters et al., 2012) and 
can be used for Genome-Wide Association studies 
analysis as it is the case of the so-called Bayes C, and 
Bayes Cπ implemented for GWAS analysis (Legarra 
et al., 2015). 

GWAS analyses typically select a small number 
of DNA markers, usually SNPs, which are closely 
linked with functional polymorphisms associated 
with quantitative traits of economic importance in 
the domestic species. The markers identified are 
subsequently subjected to post-GWAS tests with 
fine mapping techniques, in order to validate causal 
mutations with specific traits of interest (Yi, 
Breheny, Imam, Liu, & Hoeschele, 2015). 

Holstein cattle has been selected for decades in 
many places around the world under different 
selection criteria and in accordance with production 
and market conditions of each country involved. 
Colombian Holstein cattle are the most used on 
specialized dairy farms and it is located in the high 
tropic under conditions different from those of 
other countries. Several GWAS in dairy yield have 
been reported in different countries (Zhang et al., 
2014), but in tropical conditions there are few 
reports that allow to identify important regions for 
genetic improvement. 

Given the above, the objective of this work was 
to contribute to the understanding of the genetic 
variance explained by multiple SNP of the 
BovineLD Bead Chip (Illumina, San Diego CA), 
using GWAS with Bayes Cπ approach, in order to 
identify also polymorphisms associated with Dairy 
Yield (DY, h2 = 0.16), Fat Percentage (FP, h2 = 
0.32), Protein Percentage (PP,h 2 = 0.30), and 

Somatic Cell Score (SCS, h2 = 0.01) which genetic 
parameters were previously estimated (Rincón, 
Zambrano, & Echeverri, 2015). 

Material and methods 

Study population 

This work was performed with the information 
collected in dairy herds enrolled in the program of 
genetic evaluation and dairy control of the 
Universidad Nacional de Colombia at Medellín, and 
Colanta Cooperativa Ltda. The specific management 
conditions, food and health were variable in all 
herds, as well as its topography and geographical 
location.  

Breeding values of 150 bovines, choosing as 
many bulls with daughters in different dairy herds in 
Antioquia, were taken. The animals were in areas of 
lower montane rainforest, with an average 
temperature of 14°C and at an altitude between 1800 
and 2500 Meters Above Sea Level (MASL). The 
evaluated traits were Dairy Yield per lactation (DY), 
Fat Percentage (FP), Protein Percentage (PP), and 
Somatic Cell Score (SCS). Genetic values were used 
for each aspect of the 150 individuals (37 bulls and 
113 cows), from which a blood sample in the case of 
cows or semen in sires were taken for DNA 
extraction and subsequent genotyping. Parents were 
taken given the lowest possible relationship between 
groups, but in some cases, there were a few couples 
and triplets (father-mother-daughter). The animal 
selection took into account the choice of bulls with 
as many daughters as possible in the population (9 
national and 28 foreigners) and the sperm available 
in the market, because these can be very 
informative, possessing a number of major 
population haplotypes. 

DNA extraction and genotyping  

Blood samples were taken from the middle 
coccygeal vein using 5mL BD vacutainer tubes, with 
18 needles and ethylene diamine tetra acetic acid 
(EDTA) as anticoagulant (BD Vacutainer TM). 
Once the samples were taken, they were stored at 
4°C until processing. DNA extraction of some sires 
was made from semen straws of 250 and 400μL. 

For blood and semen DNA extraction DNeasy 
Blood & Tissue Kit® and QIAamp® DNA Mini Kit 
were used respectively according to the 
manufacturer recommendations. DNA samples 
were analyzed in a NanoDrop (Qiagen, USA) to 
determine its concentration and to adjust them to 50 
μg/μL. Purity was also determined by the absorbance 
ratio A260/A280 and finally, DNA integrity was 
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determined by electrophoresis in agarose gel at 0.8% 
(Amresco®). DNA samples were stored at 4°C until 
genotyping. 

A total of 150 animals were genotyped with 
BovineLD Bead Chip (Illumina, San Diego CA) 
which covers a panel of 6,909 SNPs, in KosGenetic 
laboratory of the University of Milan (Italy). It was 
determined that the test of missing data was less 
than 0.1% and SNPs with Minor Allele Frequency 
(MAF) below 0.03 were discarded. Genotypes with 
Mendelian errors greater than 0.05 were also 
declared as missing data and only the SNPs present 
in autosomal chromosomes were used. R software 
(R Development Core Team, 2012) and plink v1.07 
(Purcell, et al., 2007) were used for data editing. The 
genotypes were coded as 0, 1, or 2 according to the 
number of alternative alleles present. Missing data 
were imputed by Beagle software (Browning & 
Browning, 2009). 

Statistical analysis 

Traditional genetic values 

Estimated Breeding Values (EBV) were taken 
from the predicted values using the Best Linear 
Unbiased Predictor (BLUP) in the breeding 
program of the Universidad Nacional de Colombia 
at Medellin, and Colanta Cooperativa Ltda. 

SNPs estimated effects 

The general statistical model used was: 
ݕ  = 	μ + ݑ +	෍ܼ௜	ܽ௜ூ

௜ୀଵ + ݁ 

 
where y is the vector of genetic values for each 
evaluated trait, μ is the overall average, u is the 
vector of polygenic effects of individuals in the 
pedigree, i is SNPs number, Zi corresponds to the 
vector of genotypes for the i – th SNP, ai is the 
additive effect of each SNP, and e is the vector of 
residual effects. 

In this study the Bayesian regression method 
called Bayes Cπ (Habier, Fernando, Kizilkaya, & 
Garrick, 2011) was used, where a priori constant for 
μ is assumed, and a distribution uAσ2

u 
approximately N (0, Aσ2

u); where A is the matrix of 
relationships between individuals and σu

2 is the 
additive genetic variance not explained by SNPs. 
The distribution a priori for a୧ was a mixed 
distribution dependent on the variance σ2

ai
 and the 

probability	 	ߨ of having SNPs with effect. It is 
important to note that (Legarra et al., 2016) define ߨ 
contrary to what (Meuwissen et al., 2001). 

൜=2݅ܽߪ,ߨ|݅ܽ 0, 1)	݈݈ܾ݀ܽ݀݅݅ܽ݋ݎ݌	݊݋ܿ − 2݅ܽߪ,൫0	ܰ~(ߨ ൯,  ߨ	݈ܾܾ݀ܽ݀݅݅ܽ݋ݎ݌	݊݋ܿ

 
In Bayes Cπ it is assumed that all the effects of 

SNPs have a common variance, distributed as an 
inverted chi-squared escalated with parameters va 
and ܵ௔ଶ taken as in Bayes B (Meuwissen et al., 2001). 
For ߨ a priori distribution U(0, 1) was assumed, 
considering the convergence difficulties when ߨ is 
estimated simultaneously (Van den Berg, Fritz, & 
Boichard, 2013), an approach in which parameters 
were estimated first was prepared, and in cases 
where convergence was not achieved the proportion 
of SNPs with effect was fixed at 1% in order to 
estimate later the effect solutions of the SNPs 
included. In all cases the same approach was 
conducted, but in a way that all markers will be used 
  .(1 = ߨ)

The determination of markers association was 
performed directly on Estimated Breeding Values 
(EBV) of the general population, because this is a 
direct additive genetic effect. To this end, the GS3 
software that allows using the approach of Markov 
chain Monte Carlo (MCMC) to estimate the effect 
of each SNP among all was used. The procedure 
had 100000 iterations with a period of heating of 
20000 and with corrections every 1000, according to 
the recommended minimum to achieve 
convergence (Legarra et al., 2016). The convergence 
diagnosis was verified visually by R software (R 
Development Core Team, 2012). 

The effects of molecular markers were plotted by 
R Development Core Team, (2012) software 
according to their location in the genome. 
Additionally, the distribution was presented a 
posteriori for 	ߨ and for the variance percentage 
explained by markers. 

Defining localization map 

The localization map for the most important 
markers was performed based on the assembly 
UMD 3.1 (Bos taurus) of NCBI and ENSEMBL, 
using Variant Effect Predictor (VEP) tool (McLaren 
et al., 2010). Clusters of genes were performed 
according to ENSEMBL based on construction 
UMD 3.1 of Variant effect predictor (VEP) 
(McLaren et al., 2010). Later, ontology was used 
(Gene Ontology Consortium) and previous reports 
of analyzed QTLs were searched, according to 
Animal QTLdb public database in section cattle 
QTLdb (Hu, Park, Wu, & Reecy, 2012), looking in 
windows of maximum 1.5Mb. 
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Results 

Used breeding values show a significant variation 
between genetic values of sampled individuals. It is 
important to note that both positive and negative 
individuals were taken into account for genetic 
merit of the traits. Once filtered the information, it 
went from 6909 of SNPs to a total of 6716 SNPs 
that met set out criteria in editing. SNPs were found 
distributed in all chromosomes in the way presented 
in Table 1, out of which 6510 were autosomal and 
were used in subsequent analyzes. 

Table 1. Description of SNPs number present in the bovineLD 
Bead Chip for each chromosome. 

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of  
SNPs 390 341 310 301 305 306 282 292 268 269 275 224 209 18 219

Chromosome 16 17 18 19 20 21 22 23 24 25 26 27 28 29 X
Number of 
 SNPs 205 190 176 180 205 184 163 150 176 134 142 138 124 134 206

 

Out of all evaluated SNPs, 6899 were processed by 
VEP, 6880 of which were recognized as existing 
variants and 19 as new or unreported. In total, 2251 
SNPs of the BeadChip overlapping genes and 1303 
with transcripts were found. Most of the mutations 
found in 6k Illumina BeadChip correspond to SNPs 
located in the intergenic spaces (57%), intronic regions 
(29%), or are synonymous mutations (1%). Only a 
small portion are in untranslated regions (UTRs) and 
missense mutations (1%) or upstream (5%) or 
downstream variants of a gene (5%), so that they can be 
biologically suggested as causative mutations. 
However, it has been shown that some intronic and/or 
non-coding variants often have some sort of 
relationship with specific QTLs, either because they 
have an unknown function or because they are 
associated with regions that affect expression 
(promoters, enhancers, among others) and messengers 
maturation, or because they are in LD with the 
causative mutation. 

In determining the allele frequencies of different 
markers in the population, it was possible to observe a 
trend toward alleles of higher Minor Allele Frequency 
(MAF), which shows a clear trend towards 
intermediate and polymorphic markers selection in 
genotyping BeadChips, so that they segregate in 
different populations, generating a bias for assessment 
in population genetics. Only 11 markers out of all 
presented frequencies between 0.03 and 0.05; while 83 
had MAF under 0.1. However, the markers with MAF 
higher values provide greater statistical power and in 
formativeness for association with phenotypic traits 

and may be a better alternative to use them in genomic 
selection programs, taking into account that there is a 
greater chance that they segregate in the population. 

Considering that less frequently found variants 
(MAF < 0.05) correspond to rare variants in the 
population, they were selected to identify their 
location. Most of them were found in intergenic 
regions on different chromosomes and 3 of them 
within CNIH3, KCNIP1 and PPP1R13B genes, but 
in intronic regions. 

Moreover, no evidence (p > 0.05) was found to 
claim that even one out of the 6510 markers remaining 
after editing was deviated from Hardy Weinberg 
equilibrium (HWE). However, some markers showed 
important differences between the observed and 
expected heterozygosity. 

Subsequently, components of variance and posterior 
probability for π in each case were estimated using the 
MCMC algorithm of GS3 (Legarra et al., 2016). It is 
important to note that the π parameter has an opposite 
meaning to that defined by Meuwissen et al. (2001), π 
it is the fraction of SNPs that have an effect. The trait 
with the highest value of π was fat percentage, and the 
lowest was somatic cell score, however, by plotting the 
distribution a posteriori, it was not possible to 
differentiate in any case a strong peak in the estimation 
and generally a strong trend toward values near to zero 
was observed (Figure 1A). 

According to the results, π values were set in 0.01 
for all traits, since the results were very close to zero, 
but without a well – defined peak. Once π was set, the 
variance percentage explained by the markers was 
determined, the feature with higher value of the 
explained variance was SCS and the lowest was PP 
(Figure 1B).  

In the case of fat percentage in milk, SNPs 
accounted for approximately 0.3% out of the genetic 
variance, 18% for DY, 1.8% for PP, and 97% for SCS 
(Figure 1B), which is a bit contrasting and evidences an 
effect of different genetic architectures among the 
evaluated traits. 

The inclusion of all markers in the evaluation, 
allowed to estimate the variance effect again, showing 
that the use of all SNPs in the analysis causes a slight 
decrease in variance proportion explained by markers. 
Thus, FP had approximately 0.28% out of the variance 
explained by all markers, DY 0.39%, PP 1.4%, and  
SCS 78%. 

It was possible to find SNPs with a greater effect 
for each trait when π was fixed in 0.01 (Figure 2B). 
However, some of the markers were close to zero 
and a much smaller proportion than π showed a 
significant peak in its magnitude. Table 2 presents a 
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description of the five most important markers by 
evaluated trait, including the gene to which it is 
related and its function. Among these the most 
important marker was rs110718748 because of its 
effect and its posterior probability for DY, it was 
found within an intron in ANKS1B gene, according 
to the version Bos taurus UMD 3.1 of NCBI. 
According to ontology, this gene is involved in 
various routes according to its isoform, with a 
significant function in overall protein synthesis 
(Table 2). 

Furthermore, the most important marker for FP 
was rs109245784, this marker represents an intronic 
variation in the CLCN1 gene according to version 
NCBI UMD 3.1. This gene has a direct activity on 
chloride channels, according its ontology (Table 2). 
The most important marker for PP was rs29014693, 
which was found near the NMBR gene that plays an 
important role in various biological functions, 
including sensory activity, diet, gastric  
and pancreatic secretion, among others  (Table 2).  
 

Finally, for SCS the marker rs109548201 had the 
biggest effect, it was found inside CTSD gene, and 
presents a clear immunological effect in animals 
(Table 2). Out of all markers tested, none was 
reported as a mutation with consequences on the 
loss of meaning or not synonymous. 

The minor allele frequencies in the most 
important SNPs on different traits were between 
0.19 and 0.49, evidencing greater importance of 
SNPs with intermediate frequencies (Table 2 in all 
cases, presumably because of their informativeness 
and importance on the genetic variance. In order to 
compare if there was a similar pattern in the 
solutions when a different value of π is used, the 
solutions graph was performed considering the 
inclusion of all markers on the BeadChip (π=1) 
(Figure 2B). 

The figure shows that the higher values in 
solutions do not match for different traits; however, 
some individual solutions are important in both 
cases.  

 
Figure 1. Distribution a posteriori with Bayes Cπ (A) Distribution a posteriori of markers with effect proportion (π) (B) Distribution a 
posteriori of variance percentage explained by molecular markers. 
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Figure 2. Effects of SNPs (A) with π = 0.01 and (B) with π = 1, on fat percentage, dairy yield, protein percentage, and somatic cell score 
in milk. 

For example, in the BTA-6 for fat percentage 
(Figure 2B), it can be observed a sharp peak 
which is much lower when π = 0.01 (Figure 2A) 
but corresponding to the same marker at the top. 
Moreover, it is interesting to note that by 
including all markers, a peak on chromosome 14 
is evidenced for fat percentage, which although is 
not the largest, is important because it 
corresponds to DGAT1 gene, which has been 
proposed repeatedly as a major gene for fat 
content in milk (Grisart et al., 2002; Wang et al., 
2012). However, this peak is not observed when π 
= 0.01, possibly because there are some markers 
with greater effect. Finally, it should be noted that 
the estimation with a markers fraction allowed to 

explain a greater proportion of the variance in 
some cases and was therefore used in this work. 

Discussion 

The use of breeding values as response variable 
for estimating the effects of the markers, can include 
only additive genetic effects and isolate additional 
effects of more complex models, such that 
computational requirements can be reduced, 
looking to promote convergence and decrease 
computing time, especially in complex models that 
require joint estimation of several different 
parameters. Some works have directly used genetic 
merit to estimate additive effects of genetic variants 
(Calus, De Haas, & Veerkamp, 2013; Van Hulzen  
et al., 2012). 
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Table 2. Description of polymorphisms with greater effect on Dairy Yield per lactation (DY), milk Fat Percentage (FP), Protein 
Percentage (PP), and Somatic Cell Score (SCS). 

Trait rs code Chromosome / 
position MAF Gene/consequence Function 

DY 

Rs110718748 5/63899453 0.40 ANKS1B/intronic variant There are different isoforms of the gene with neuronal regulation 
functions, regulation of global protein synthesis, APP regulated. 

Rs41607880 4/89380482 0.49 TMEM229A/close intergenic 
variant Activity with binding transcription factors to specific DNA sequence

Rs110425841 22/60508872 0.14 PODXL2/Intronic variant and upstream of 
ABTB1 

PODXL2: transmembrane proteins binding to glycosaminoglycans 
ABTB1: Elongation factor activity in translation. 

Rs43483670 6/103079093 0.23 MAPK10/Intronic variant JUN kinase activity and MAP kinase (Signaling) 
Rs41913085 11/19125116 0.45 VIT/Nearby intergenic variant glycosaminoglycan binding 

FP 

Rs109245784 4/107540967 0.29 CLCN1/Intronic variant Chloride channels activity 
Rs41571534 19/26182297 0.19 WSCD1/Nearby intergenic variant sulfotransferase activity, milk fat 

Rs41670205 2/55831708 0.45 LRP1B/Intronic variant 
Activity in cell surface proteins that bind and internalize ligands in the 
process of receptor - mediated endocytosis. Calcium and low - density

lipoprotein binding. 
Rs43655765 11/2350093 0.49 SNRNP200 / Synonymous variant. Small nuclear ribonucleoprotein (determining role in splicing) 

Rs110897514 17/20336068 0.43 PCDH18 / Nearby intergenic variant Calcium dependent cell adhesion protein 

PP 

Rs29014693 9/80015418 0.45 NMBR / Nearby intergenic variant 
Involved in many biological functions such as feeding, pituitary, 

gastric and pancreatic secretion, cell development and differentiation, 
among others. 

Rs41772701 15/57260972 0.47 CAPN5 / Intronic variant Endopeptidase activity calcium dependent cysteine type. 

Rs29023352 4/118676822 0.38 INSIG1 / Nearby intergenic variant Intermediary in cholesterol synthesis control. Plays a role in the 
growth and differentiation of tissue involved in metabolic control. 

Rs41576177 24/32677985 0.38 OSBPL1A / Intronic variant It binds to phospholipids and cholesterol. 

Rs41624303 5/82878525 0.26 Arntl2 / Intronic variant Activity in protein dimerization and activity of binding transcription 
factors to specific DNA sequence 

SCS 

Rs109548201 29:50361506 0.28 CTSD / Downstream variant (9PB) Acid protease activity in intracellular protein breakdown. Involved in 
the pathogenesis of several diseases. 

Rs41589068 5:30275164 0.25 Among NCKAP5L and TMBIM6 / 
Intergenic 

TMBIM6: Apoptosis modulator, calcium homeostasis. 
NCKAP5L; Activity associated to signaling mechanisms. 

Rs41797394 16:33121540 0.39 Locus uncharacterized near EFCAB2 EFCAB2 Binding activity to calcium ions 
Rs41602750 5:93871154 0.44 MGST1 / Nearby intergenic variant Glutathione peroxidase activity and homodimerization 

Rs109119975 15:31153296 0.41 
Intergenic variant near to immunological 
important gene cluster PVRL1, THY1, 

C1QTNF5 

PVRL1: protein homodimerization activity. 
THY1: binding and activating protein kinase, cell-cell interaction and 

cell ligand. 
C1QTNF5: Plays a role in cell adhesion, related to tumor necrosis 

factor. 
 

Generally, genetic values of sampled animals 
showed a significant variability, with values almost 
near zero, so it was possible to have animals 
positively and negatively assessed to estimate 
additive effects on evaluated markers. The polygenic 
effect was used in the model in order to reduce false 
positives showing up (Legarra et al., 2015), given 
that the used BeadChip includes only a small 
proportion of genetic variants that can be found, and 
therefore it is normal not to reach to explain a large 
proportion of the genetic variance in some traits. 

Given that present markers on the BeadChip are 
often selected following a uniform distribution in 
the genome, we can see that there is a relationship 
between the size of the chromosome and the 
number of variants within it (Table 1), which can 
exert additional ascertainment bias on markers on 
the BeadChip. This type of markers distribution has 
been previously reported and seeks to place at least 
one marker in each haplotype block linked to a QTL 
and to promote the imputation process (VanRaden 
et al., 2013; Wiggans, Cooper, Van Tassell, 
Sonstegard, & Simpson, 2013). 

Moreover, it is important to mention that in the 
search process for causative mutations and relevant 

biological information, it was possible to identify 
generally that most SNPs present on 6k genotyping 
BeadChip are located in regions in which an 
important biological consequence (synonymous or 
non-coding mutations) cannot be attributed. 

However, a small number of markers could have 
consequences in the expression of specific genes, 
although it must be noted that most non-
synonymous mutations have deleterious effects and 
therefore decrease segregation in population 
likelihood. It is also worth clarifying that it is logical 
to have few markers in coding regions if it is 
considered that a very small percentage of genetic 
material corresponds to genes (< 3%), for this reason 
most of reported variations are found in noncoding 
regions. However, markers with great effect in genome 
sections without apparent or noncoding function can 
be found, possibly because they have a role in 
regulating expression or messengers’ maturation. 

Furthermore, it is possible to find molecular 
markers in intergenic regions or non-coding regions 
with a significant effect, because they are linked with 
an important QTL for a special trait, which is very 
common and significant in species with a small 
effective number of population (Ne) without recent 
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expansion, such as Holstein cattle (Daetwyler et al., 
2014; Villa-Angulo et al., 2009). 

MAF distribution allowed to observe a trend 
toward markers with intermediate frequencies in the 
Holstein individuals sample, because genotyping 
BeadChip are biased towards common variants, so 
that they could be found segregating in different 
cattle populations worldwide. This bias has been 
known as “Ascertainment bias” and can be a problem 
for population genetics studies, especially those 
related to diversity and genetic differentiation 
(Lachance & Tishkoff, 2013). 

On the other hand, this type of intermediate 
allele frequencies may be more important for 
genetic evaluation, because it improves testing 
power and different gene variants informativeness, 
due to the increase in the likelihood of identifying 
markers segregating in the population, so that a 
significant proportion of the genetic variance of 
important traits for dairy production can be 
explained. Importantly rare variants (MAF > 0.05) 
were few and were found in regions that apparently 
do not involve a direct genetic consequence, so they 
can be neutral variants that tend to fixation. 
However, it is necessary to note that rare variants are 
difficult to associate with a significant effect and 
require a high statistical power to one of these 
variants be significant on a specific feature, even in 
populations as Holstein which has a small effective 
number of the population. This can be one of the 
reasons why the increase from a density point is not 
advantageous for genomic selection genotyping 
(Lohmueller, 2014). 

The π fraction assessment of SNPs with effects 
on phenotypic traits is defined in this work 
accordingly as presented by Legarra et al. (2016), 
which is the opposite to what Meuwissen et al. 
(2001) defined for Bayes B. In estimates achieved in 
this work, it was observed a trend towards π near to 
zero in all evaluated traits, indicating that only a 
small number of markers has effect and is important. 
Similar results have been reported in previous studies 
(Peters et al., 2012; Van den Berg et al., 2013). It should 
be clarified that convergence where π was deemed 
simultaneously was elusive and sometimes the 
distribution had trouble exhibiting defined peaks 
(Figure 1A); however, this has already been reported 
by using Bayes C in a genome-wide association study, 
it has even been reported that fixing π yields better 
results (Van den Berg et al., 2013). 

On the other hand, Bayes C has been reported as 
a successful method for identifying great QTLs 
(Sun, Habier, Fernando, Garrick, & Dekkers, 2011) 
and has been used for different traits in beef cattle 

(Peters et al., 2012; Peters et al., 2013), pigs (Fan et 
al., 2011), and simulation studies with different 
genetic architectures (Van den Berg et al., 2013). 
Even recently Habier, Fernando, and Garrick (2013) 
discussing the linkage disequilibrium, concluded 
that BLUP is not able to define effects in some 
genome linked regions and recommended Bayesian 
methods with t distributions a priori that fit better in 
some cases where LD decays rapidly with distance. 
However, for large QTLs detection it was reported a 
significant effect of the genetic architecture of the 
evaluated traits, so that detection is more accurate 
using Bayes C for traits of medium to high 
heritability, with a moderate or low number of 
QTLs, and when it has a large number of records 
(Van den Berg et al., 2013), some of which are not 
met with the sample taken, so the mapping results 
should be approached with caution. 

An interesting result emerges from the variance 
percentage assessment explained by genetic markers, 
because this percentage may be increased by fixing a 
π fraction of markers with effect, regarding the use 
of all markers. This means that it is possible to 
generate excess noise markers in the assessment, and 
therefore a much smaller proportion of variants can 
be used with the same advantages for the estimation, 
may even exceed them. However, to assess the 
actual effect it is necessary to propose scenarios that 
allow to properly define the true purpose of setting a 
π fraction for genome-wide association studies. 
Pérez-Enciso, Rincón and Legarra (2015), argued 
that using relevant biological information for genetic 
evaluation may be important, even recently it has 
been suggested a methodology that leverages the use 
of information from the GWAS studies for genomic 
evaluation programs, showing some interesting 
advantages especially in cases where small samples 
and low heritability traits are used, depending on 
traits genetic architecture thereof (Van den Berg, 
Boichard, Guldbrandtsen, & Lund, 2016; Zhang et 
al., 2014). 

GWAS analyses have been successful in 
identifying new mutations associated with diseases 
and production traits. However, variants identified 
as statistically significant often explain a very low 
fraction of the genetic variance, even in features 
having high heritability (Clarke & Cooper, 2010). 
Many explanations have been proposed taking into 
account modeling issues, contrasting genetic 
architecture of the traits, including epistatic effects, 
problems of sample size, reference population and 
statistical technique applied (Makowsky et al., 2011). 

In this paper the variance percentage explained by 
the markers was variable depending on the property, 
which in turn depends on the genetic architecture that 
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can be contrasting in the productive traits evaluated 
(Hayes, Pryce, Chamberlain, Bowman, & Goddard, 
2010). Some studies indicate that the fraction of the 
additive variance explained by genes or regions near 
genes may be from 0.05 to 0.2, but more recent studies 
have reported up to 0.5, which is consistent with DY, 
FP and PP traits, but far from the explained variance in 
the case of Somatic Cell Score (SCS) (Misztal, 2011). 

Some research has suggested that SNPs density 
increases the accuracy in the estimation of genomic 
breeding values of animals up to a tipping point 
where it begins to decrease the increase rate to form 
a plate, where increased density does not improve 
accuracy achieved (Harris, Creagh, Winkelman, & 
Johnson, 2011; VanRaden et al., 2013), although this 
depends on the genetic architecture of the evaluated 
traits (Gibbs et al., 2009). However, the importance 
of identifying specific regions where the SNPs has 
been highlighted, with the intention to reduce 
interference (noise) generated by the amount of 
information and to improve estimates for genetic 
values (Zhang et al., 2014). Although the BeadChip 
intensity used in this work is not the highest, it 
could be used for estimation and identification of 
significant effects and markers associated with 
important traits in milk production. 

It is clear that the genetic architecture differs 
between the quantitative traits of importance for the 
dairy industry (Hayes et al., 2010). However, for 
some traits a large proportion of the genetic variance 
is associated with genomic regions with very small 
effect variants, and only a few traits present variants 
of great effect on a phenotypic characteristic and 
explain large proportion of the genetic variance 
(Dekkers, 2012). According to the genetic 
architecture, features which are governed by a 
greater number of QTLs, are less likely to identify 
false positives using the methodology Bayes C. In 
the same way the power of the test increases with 
heritability (Van den Berg et al., 2013). 

The Bovine HapMap consortium (Gibbs et al., 
2009), reported a low level of linkage disequilibrium 
(LD) above 1000 kb in different breeds of dairy 
cattle, which obviously has an influence on GWAS 
studies, as these exploit the LD between the marker 
and the QTL. A low density of QTLs may decrease 
the chance of finding a marker associated with QTL 
but also decreases the probability of having 
redundant markers, taking into account the 
homogeneous distribution of SNPs in commercial 
BeadChips (Wiggans et al., 2013). Related 
individuals can generate significant LD even in cases 
where there is no connection. However, it is 
possible to reduce false positives by the presence of 
related individuals with a model that uses the 

information in the pedigree (MacLeod, Hayes, & 
Goddard, 2009), as in the present work. 

It is important to note that QTL mapping is 
generally accompanied by a large confidence interval in 
chromosomes (Manichaikul, Dupuis, Sen, & Broman, 
2006), thus, identifying the causative mutation and 
important genes on a feature is often difficult to 
achieve even in specialized cattle as Holstein and where 
the effective number of the population is small and the 
haplotype blocks are larger (Villa-Angulo et al., 2009). 
By using linked markers and not directly causal 
mutation or a mutation closed to QTL, losses of 
accuracy for genomic selection after generations due to 
recombination processes are presented (Meuwissen & 
Goddard, 2010). 

It is interesting to note that in graphics of effects, 
when π = 0.01 (Figure 2A) and π = 1 (Figure 2B) 
set scales were very different and the magnitudes of 
the estimated effects were much greater in the case 
of choosing a fraction of variants with effect. 

Identifying markers when π = 0.01, allowed to 
present a summary of SNPs with greater effect, 2 
out of which were previously reported as directly 
associated with a QTL, although not necessarily on 
the same assessed trait. Others were almost all in the 
region attributed to a QTL (without direct proof) or 
close to this (Table 3). 

In this study no significant association with the 
DGAT1 gene was found for fat percentage, when 
Bayes C was used setting π = 0.01, which is strange 
if you consider that this gene has been considered a 
major gene for fat percentage in milk. However, 
when the analysis was performed including all 
markers, it was possible to observe a peak on 
chromosome 14 that corresponded with a marker 
into the gene (Grisart et al., 2002; Wang et al., 2012). 
According to the above, it is possible to fix a fraction 
of markers with effect on a feature; some important 
SNPs go unnoticed or are overshadowed by markers 
with a greater effect on the assessed trait. 

The summary of assessed markers and the traits 
they were associated to, according to the report in the 
public database cattle QTLdb section Animal QTLdb 
(Hu, Park, Wu, & Reecy, 2012) is presented in Table 3. 

It is worth noting that greater effect markers 
often were corroborated with QTLs, supporting the 
estimate presented in this paper when a fraction of π 
markers was fixed by Bayes C. 

The results should be interpreted with caution 
because the number of animals may not be large 
enough, and for that reason only 5 markers with 
greater effect were taken, to make a subsequent 
possible fine mapping work in order to find QTN 
directly or better map identified QTLs, as they often 
have very wide confidence belts. 
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Table 3. Relationship of polymorphisms with greater effect on Dairy Yield per lactation (DY), milk Fat Percentage (FP), Protein 
Percentage (PP), and Somatic Cell Score (SCS) with previous reports of mapped QTLs. 

Trait rs code Location QTL type associated 

DY 

Rs110718748 In the interval attributed to a QTL. Direct 
association reported Dairy yield, % fat, pregnancy and calving ease. 

Rs41607880 Close to a QTL (< 1Mb). Milk production, fat and protein production, delivery first estrus interval, 
consumption. 

Rs110425841 In the interval attributed to a QTL. Fatty acids in milk and somatic cell score, weight. 
Rs43483670 Close to a QTL (< 1.5 Mb) Meat quality 

Rs41913085 In the interval attributed to a QTL. Direct 
association reported Reproductive traits and content of Beta-lactoglobulin. 

FP 

Rs109245784 No QTL reported in the region.  

Rs41571534 In the interval attributed to a QTL. Myristoleic acid content, EBV for milk fat production, percentage of linoleic 
acid in milk, 

Rs41670205 Close to a QTL (< 1 Mb). Protein production, grade of milk. 
Rs43655765 In the interval attributed to a QTL. Logissimus lean muscle area, pentadecanoic acid content. 

Rs110897514 Close to a QTL (<0.5 Mb). Production of milk fat, energy production in milk, fat percentage and protein 
production. 

PP 

Rs29014693 Close to a QTL (< 0.5 Mb). Capric acid content. 
Rs41772701 Close to a QTL (< 0.5 Mb). Relationship Omega 3 / Omega 6 content of docosahexaenoic acid 
Rs29023352 Close to a QTL (< 0.5 Mb). Birth weight 
Rs41576177 Close to a QTL (< 1.5 Mb). Fertility rates and feed conversion 
Rs41624303 Close to a QTL (< 1.5 Mb). C22:1 fatty acid content 

SCS 

Rs109548201 Close to a QTL (< 0.5 Mb). Lignoceric acid content, iron content. 

Rs41589068 In the interval attributed to a QTL. Udder height, croup lenght, cell-mediated immune response, protein 
percentage in milk, fat production. 

Rs41797394 Close to a QTL (< 1.5 Mb). Paratuberculosis susceptibility, early embryonic survival. 
Rs41602750 No QTL reported in the region.  

Rs109119975 Close to a QTL (< 0.5 Mb) Somatic cell score, udder composition index, subcutaneous fat, milk 
production. 

 

Finally, some of the current approaches suggest 
to find strategies to identify causal variants in 
complex traits, with the aim of accelerating progress 
towards QTN (Quantitative Trait Nucleotide) 
based selection and more accurate prior knowledge-
based technologies and genetic architecture of traits 
to be assessed (MacLeod, Hayes, & Goddard, 2014; 
Zhang et al., 2014). Future strategies may include 
selection markers with great effects for future high 
density BeadChips, development of technologies 
such as "Genome Editing", and selection with the 
intention of obtaining optimized individuals for 
specific environments, and genomic selection 
programs calibrated in particular conditions. It is 
important to note that the estimates and important 
markers can be variable among populations, and the 
more remote populations are the less likely the same 
regions have similar effects on a specific aspect. 

Conclusion 

The Bayes-C estimation allowed the identification of 
different regions possibly associated with QTLs for the 
evaluated traits.  Markers in important genes as 
ANKS1B, CLCN1, NMBR and CTSD were found for 
DY, FP, PP and SCS, respectively. The reported genes 
corresponding with metabolic functions like protein 
synthesis regulation, sulfotransferase activity, cholesterol 
metabolism intermediary, among other functions. On 
the other hand, according to the genetic architecture, it 

was possible to predict more or less the genetic variance 
percentage of the traits, even the proportion of 
significant markers for traits were biased towards zero, 
which suggests that much of the molecular information 
generated noise in the estimates, so their debugging 
could have important effects on the estimates for 
genomic selection programs. 
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