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ABSTRACT. The purpose of this study was to establish a multivariate model using two complementary 

multivariate statistical techniques: Factor Analysis and Stepwise Multiple Regression, to predict tissue 

composition through carcass characteristics of Santa Inês sheep. The data was obtained from 82 Santa Inês 

sheep under confinement. The predictor variables were carcass characteristics related to weight, yield, 

morphometric measures and meat cuts. The use of latent variables from factor analysis in multiple 

regression models eliminates the problem of multicollinearity of the explanatory variables, improving the 

accuracy of interpretation of results by proposing a better fit of the mathematical model. However, the 

coefficient of determination (R²) values were moderate for muscle proportion and total fat, and low for bone 

proportion, indicating that more appropriate independent variables should be used to better predict the 

proportion of tissues in Santa Inês sheep. 
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Introduction 

Carcass evaluation is a key process in determining the value and quality characteristics of production 

animals destined for slaughter. To a large extent, commercial value is related to carcass yield and quality. As 

described by Ekiz, Baygul, Yalcintan, and Ozcan (2020), carcass yield and composition (proportions of muscle, 

fat, and bone) are important determinants of carcass quality due to the high variability observed in these 

characteristics and their obvious effects on commercial value. However, to determine composition more 

accurately, a total or partial dissection of these components is required, which is an expensive and time-

consuming method.  

Therefore, multiple regression analysis is a commonly used prediction model for interpretation between a 

dependent variable and two or more independent variables, however, this method has some disadvantages. 

The development of multiple regression models using independent variables with high correlations may 

present limitations in their inference and accuracy, and are likely to have serious effects on the estimates of 

regression coefficients and the overall applicability of the estimated model (Gomes et al., 2013), due to the 

problem of multicollinearity.  

To avoid this problem, studies have been carried out using orthogonal factor scores (latent variables) 

present in multivariate factor analysis. Çelik et al. (2018) used factor scores to evaluate the influence of 

carcass parts weights on total weight in turkeys. Daskiran, Keskin, and Bingol (2017) determined the 

relationship between daily milk production and udder characteristics in goats through factor scores. Önk, 

Sari, and Gürcan (2018), Tahtali (2019) and Tariq et al. (2012) also used factor scores to estimate body weights 

in lambs. In a recent study, factor analysis and multiple stepwise regression were used to predict carcass 

characteristics, carcass cuts, internal fat, viscera and loin eye area from body measurements of crossbred Boer 

goats  (Macena et al., 2022). 

The prediction of body and carcass composition of ruminants was first proposed by Hankis and Howe 

(1946), who showed that the chemical composition of the section of the 9, 10 and 11th ribs was significantly 
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correlated with carcass composition in beef cattle. This triggered subsequent studies that showed that 

different cuts and carcass measures can be effective predictors in the evaluation of body composition and 

overall carcass of ruminants (Fernandes et al., 2008; Lambe et al., 2009; Marcondes, Tedeschi, Valadares Filho, 

& Chizzotti, 2012; Ribeiro & Tedeschi, 2012). 

Therefore, it was hypothesized that orthogonal factor scores arising from the combination of different 

carcass traits can produce reliable predictions of the tissue composition of Santa Inês sheep. Based on the 

information above, the purpose of this study was to establish a multivariate model using two complementary 

multivariate statistical techniques: Factor Analysis and Stepwise Multiple Regression, to predict the tissue 

composition in Santa Inês sheep, using the characteristics of weight, yield, morphometric measures and meat 

cuts as independent variables. 

Material and methods 

Experiment and animals 

The experiments were carried out in the Goat and Sheep breeding sector of the Human, Social and 

Agriculture Sciences Center of the Federal University of Paraíba, which is located in the city of Bananeiras, 

state of Paraíba, Brazil. A total of 82 Santa Inês sheep were used from two experiments that were carried out 

to determine carcass characteristics and meat quality under confinement. The research protocols of the two 

experiments were approved by the Ethics Committee of the Federal University of Paraíba. 

The experiment 1 aimed to evaluate different levels of cactus pear inclusion (Opuntia ficus-indica, Mill) in 

the diet and restriction of voluntary water intake on performance, carcass characteristics and meat quality of 

Santa Inês sheep. The experiment 2 aimed to evaluate carcass characteristics and meat quality in Santa Inês 

sheep fed with increasing levels of guava agro-industrial waste (Psidium guajava L.) in the diet. The main 

information of the experiments is shown in Table 1. 

Table 1. Main information of the experiments. 

Characteristics Experiment 1 Experiment 2 

Number of animals 42.0 40.0 

Initial age, days 180.0 120.0 

Initial weight, kg 21.6 ± 2.2 21.3 ± 2.2 

Slaughter weight, kg 28.9 ± 2.6 34.2 ± 3.4 

Cold carcass weight, kg 14.1 ± 1.3 15.6 ± 1.8 

 

Slaughter procedures and carcass characteristics 

Slaughter was performed according to the current RIISPOA (Brasil, 2000) norms; the animals were stunned 

by captive dart pistol, with stunning followed by bleeding for four minutes, through carotid and jugular 

sections. The blood was collected in a previously weighed container for later weighing.  

After skinning and evisceration, the head (section at the atlanto-occipital joint) and legs (section at the 

metacarpal and metatarsal joints) were removed and the hot carcass weight (HCW) was recorded. The internal 

components of the pelvic, abdominal and thoracic cavities were extracted and their weights were recorded. 

After obtaining the hot carcass weight (HCW), the carcasses were taken to the cold chamber, at an average 

temperature of 4°C, in which they remained for 24 hours suspended on hooks by the tendon of the 

gastrocnemius muscle, and then the cold carcass weight (CCW) was obtained, according to the methodology 

of Cezar and Souza (Cezar & Souza, 2007).  

The gastrointestinal tract (GIT) was weighed full and empty for determination of empty body weight (EBW, 

kg) and biological yield (BY%) = HCW/EBW × 100. Kidneys and perirenal fat were removed and subtracted 

from HCW and CCW to calculate hot carcass yield (HCY, %) = HCW/LWS × 100, cold carcass yield (CCY, %) = 

CCW/LWS × 100 and cooling loss (CL, %) = HCW - CCW/HCW × 100, according to Cézar and Souza (Cezar & 

Souza, 2007).  

After the cooling period, the carcasses were sectioned in half and the half-carcasses were weighed. In the 

left half-carcass the internal and external length, leg length, thorax perimeter, croup perimeter, thorax depth, 

thorax width and croup width were measured, according to the methodology proposed by Cezar and Souza 

(2007). The carcass compactness index (CCI) was also calculated through the equation CCI (kg/cm) = CCW/ 

carcass internal length, according to methodology proposed by Cezar and Sousa (Cezar & Souza, 2007).  
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After the carcasses were longitudinally divided, the half carcasses were sectioned into five anatomical 

regions that composed the commercial cuts, according to the methodology adapted from Cezar and Souza 

(2007), divided into neck, shoulder, rib, loin and leg. Then, the individual weight of each cut from the left half 

carcass was recorded to calculate their proportion in relation to the sum of the reconstituted half carcass, thus 

obtaining the yield of the carcass cuts.  

For further evaluation of tissue composition, the left leg from each animal was packed in high-density 

polyethylene bags and frozen at -18ºC. In order to determine the tissue composition, these pieces were then 

dissected, according to the methodology described by Brown and Williams (1979), being previously gradually 

thawed and kept at a temperature of approximately 4ºC for 24 hours.  

With the use of scalpel, tweezers and scissors, the following tissue groups were separated: subcutaneous 

fat, intermuscular fat (all fat located below the deep fascia, associated with muscles), muscle (total weight of 

muscles dissected after complete removal of all adhered intermuscular fat), bone (total weight of the leg 

bones), and other tissues (all unidentified tissues, composed of tendons, glands, nerves, and blood vessels). 

The weights and yields of the dissected tissues were obtained by dissecting the leg, and the percentage of 

tissue components was calculated in relation to the reconstituted weight of the leg after dissection.  

Statistical analyses 

Descriptive statistics (mean, standard deviation, variance, minimum and maximum values) were 

determined for all variables. Pearson’s analysis was used to determine the correlation coefficient of dissected 

tissue compositions (muscle, bone, and fat) with the independent variables. Regressions were carried out 

through PROC REG of SAS® OnDemand for Academics. 

The effectiveness of the multiple regression analysis was determined through coefficient of determination 

(R²), mean square error (MSE), variance inflation factor (VIF) as indicator of multicollinearity, and Mallows’ 

Cp statistic. The VIF is an indicator of multicollinearity and indicates how much a regression coefficient is 

increased due to correlations between predictors in the model.  

Mallows’ Cp (Mallows, 2000) is a measure of quality of fit, which is often used to evaluate the regression 

model (Miyashiro & Takano, 2015). Mallows’ Cp is given by (Equation 1):  

𝑅𝑆𝑆

𝜎2 + 2𝑝 − 𝑛)   (1) 

where RSS is the residual sum of squares, σ2 is the residual variance, p is the number of parameters in the model 

(including the intercept) and n is the number of variables. The goal is to find the best model involving a subset of 

predictors. Thus, only those models that have Cp values close to the number of parameters (including the intercept) 

should be considered as a desired criterion for selecting a subset of predictors (Mallows, 2000). 

Multiple regression analysis was used to estimate the dissected tissue compositions from different carcass 

characteristics. However, in the set of independent variables there may be variables that have little influence 

on the dependent variables; thus, the stepwise procedure was used to select which variables have the most 

influence on the dependent variables and thus can decrease the number of variables to compose the model 

equation (Alves, Lotufo, & Lopes, 2013). According to Senra, Nanci, Mello, and Meza (2007), this procedure 

is based on the observation that some variables have little contribution to the average efficiency of the model; 

therefore, once identified, they can be removed from the model.  

The stepwise multiple regression analysis was performed using the model (Equation 2):  

𝑌 =  𝛼 +  𝛽1𝑋1 +  𝛽2𝑋2 +. . . + 𝛽𝑛𝑋𝑛 + 𝑒  (2) 

where Y is the dependent or response variable; α is the intercept of the regression equation, β1, β2 and βn are 

regression coefficients of variables X1, X2 and Xn that are the independent or explanatory variables and e is 

the residual random error. The criterion used for entry and permanence of an independent variable in the 

model was p > 0.05. 

In multiple regression analysis, an estimation method based on the factor scores from factor analysis can 

be used to eliminate the limitations caused by the multicollinearity problem among the independent 

variables. The main purpose of factor analysis is to allow understanding and interpreting the supposed 

relationship between multiple variables and to represent these multiple variables in a minimum number of 

factors (latent variables) required for the maximum variance represented by the original variables.  
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Bartlett’s test and the Kaiser-Meyer-Olkin (KMO) test are applied to test the divisibility of the 

correlation matrix into factors (Tahtali, 2019). If the null hypothesis is rejected according to the results 

of Bartlett’s test, the factor analysis can be continued. An index below 0.5 with the KMO test indicates 

that the relationship between pairs of variables cannot be explained by other variables (Çelik et al., 2018), 

showing inadequacy. Orthogonal Varimax rotation was employed to improve the interpretation of the 

extracted factors.  

The PROC FACTOR procedure of the statistical software SAS® OnDemand for Academics was used for the 

retention of the factors through principal component analysis and the choice of the number of factors through 

Kaiser’s (1974) criterion, which considers eigenvalues ≥ 1 as significant. 

The model used in the analysis was (Equation 3):  

𝑋1 =  𝑎11𝐹1 +  𝑎12𝐹2 + ⋯ +  𝑎1𝑚𝐹𝑚 +  𝜀1 

𝑋1 =  𝑎21𝐹1 +  𝑎22𝐹2 + ⋯ +  𝑎2𝑚𝐹𝑚 +  𝜀2]        (3) 

𝑋1 =  𝑎𝑝1𝐹1 +  𝑎𝑝2𝐹2 + ⋯ +  𝑎𝑝𝑚𝐹𝑚 +  𝜀𝑝 

The factor model was built by the factors 𝐹1, … , 𝐹𝑚, 𝑚 ≤ 𝑝. Where: X1, X2 and Xp = studied variables; a = 

factor loadings; F = F1, F2, ..., Fm are the non-correlated factors; ε = ε1, ε2, ..., εp are variables with mean 0 and 

variance 1. 

Thus, the multiple regression analysis was also used to estimate carcass tissue composition from the 

extracted factors, according to the model:  𝑌 =  𝛼 + 𝛽1𝐹1 + 𝛽2𝐹2+ ... +𝛽𝑛𝐹𝑛 + 𝑒 (Equation 4), in which Y is the 

dependent/response variable; α is the intercept of the regression analysis; β1, β2 and βn are the regression 

coefficients of scores F1, F2 and Fn that are the explanatory variables or factors, and e = residual random error. 

Results and discussion 

Descriptive statistics of dependent and independent variables 

The proportions of tissues dissected from the sheep carcasses are shown in Table 2. The proportions of muscle, 

bone and total fat were 68.14, 18.87 and 9.36, respectively. These values were consistent with those reported 

previously for carcasses of Santa Inês sheep (Cardoso et al., 2021; Fernandes et al., 2021). Similar tissue proportions 

were also reported for sheep with no defined racial pattern by Lima Júnior et al. (2017). 

Table 2. Descriptive statistics of dependent variables. 

Variables µ±sd Variance Min. Max. 

Muscle proportion (%) 68.14 ±3.88 15.04 58.87 77.64 

Bone proportion (%) 18.87±2.26 5.09 15.28 27.81 

Total fat proportion (%) 9.36±2.85 8.14 4.10 17.03 

µ±sd = mean ± standard deviation. 

Descriptive statistics of the independent variables used to predict carcass tissue composition are shown in 

Table 3. The presented variables are related to weight, yield and meat cut characteristics. Studies have shown 

that different carcass parts and measures can be accurate predictors of body and carcass composition in 

ruminant animals, considering them as independent variables (Lambe et al., 2009; Marcondes et al., 2012; 

Ribeiro & Tedeschi, 2012). 

Correlation coefficients between carcass characteristics and tissue composition 

The correlation coefficients between the proportions of carcass tissues and carcass characteristics are 

shown in Table 4.  

Muscle proportion had positive correlation coefficients with traits related to yield variables (BY, HCY, CCY, 

RIBY, NECY and SHOY), LP and CCI. The strongest correlations of muscle proportion were obtained with the 

measure variables CIL (r = -0.590), LL (r = -0.588), CW (r = -0.688), TW (r = -0.661) and with the meat cuts LOI 

(r = -0.570) and SHO (r = -0.672). Ekiz et al. (2020) evaluated Gokceada breed goats and found no significant 

result (p > 0.05) between the variable CIL and muscle proportion. On the other hand, the correlations of 

muscle proportion with certain carcass characteristics, such as CCW, CP, TP, RIB, and SHO, were not 

significant in this study (p > 0.05). 



Multivariate analysis: evaluation of sheep carcass Page 5 of 11 

Acta Scientiarum. Animal Sciences, v. 46, e64555, 2024 

Table 3. Descriptive statistics of independent variables. 

Variables Abbreviations µ±sd Variance Min. Max. 

Weight (kg) 

Live weight at slaughter LWS 31.58±4.00 15.97 22.70 42.00 

Empty body weight EBW 25.73±3.33 11.06 18.27 34.70 

Hot carcass weight HCW 15.17±1.80 3.25 11.20 20.20 

Cold carcass weight CCW 14.87±1.73 2.98 11.09 20.00 

Yield (%) 

Biological yield BY 59.15±3.68 13.51 48.12 73.88 

Hot carcass yield HCY 48.18±3.07 9.45 38.64 60.26 

Cold carcass yield CCY 47.27±3.29 10.82 37.08 59.60 

Leg yield LEGY 30.08±3.75 14.05 19.37 41.27 

Loin yield LOIY 12.93±2.17 4.70 7.63 20.12 

Rib yield RIBY 29.99±3.89 15.16 19.74 38.53 

Neck yield NECY 6.92±1.19 1.41 4.18 9.98 

Shoulder yield SHOY 18.81±2.44 5.93 10.90 23.78 

Morphometric measures (cm)      

Carcass external length CEL 56.39±3.03 9.15 48.00 65.00 

Carcass internal length CIL 60.66±4.59 21.04 51.00 71.00 

Leg length LL 34.57±2.85 8.12 28.00 39.00 

Croup width CW 17.99±3.47 12.07 12.20 26.00 

Thorax width TW 17.21±4.08 16.61 11.20 24.50 

Croup perimeter CP 57.09±5.47 29.93 49.00 91.00 

Leg perimeter LP 37.31±3.09 9.53 28.00 43.00 

Thorax perimeter TP 67.96±3.77 14.22 58.00 85.50 

Carcass compactness index CCI 0.25±0.02 0.00 0.20 0.29 

Cuts (kg)      

Leg LEG 2.22±0.30 0.09 1.41 3.02 

Loin LOI 0.96±0.18 0.03 0.64 1.46 

Rib RIB 2.22±0.30 0.09 1.51 3.14 

Neck NEC 0.76±0.26 0.07 0.38 1.27 

Shoulder SHO 1.39±0.17 0.03 0.99 1.83 

 

Table 4. Pearson’s correlation (r) between tissue composition and carcass variables. 

Variables Abbreviations Muscle (%) Bone (%) Fat (%) 

Weight (kg)     

Live weight at slaughter LWS -0.412* -0.362* 0.501* 

Empty body weight EBW -0.428* -0.364* 0.525* 
Hot carcass weight HCW -0.255* -0.361* 0.412* 

Cold carcass weight CCW -0.215NS -0.327* 0.367* 

Yield (%) Yield (%)    

Biological yield BY 0.418* 0.069 NS -0.331* 

Hot carcass yield HCY 0.356* 0.048 NS -0.246* 
Cold carcass yield CCY 0.407* 0.113 NS -0.319* 

Leg yield LEGY -0.096 NS 0.094 NS 0.033 NS 

Loin yield LOIY -0.525* -0.142 NS 0.494* 
Rib yield RIBY 0.222* 0.155 NS -0.206 NS 

Neck yield NECY 0.371* -0.091 NS -0.235NS 

Shoulder yield SHOY 0.307* 0.093 NS -0.282* 

Morphometric measures (cm)     

Carcass external length CEL -0.411* -0.002 NS 0.353* 
Carcass internal length CIL -0.590* -0.186 NS 0.567* 

Leg length LL -0.588* -0.079 NS 0.486* 

Croup width CW -0.688* -0.313* 0.618* 
Thorax width TW -0.661* -0.348* 0.605* 

Croup perimeter CP -0.204 NS -0.199 NS 0.205 NS 

Leg perimeter LP 0.490* 0.039 NS -0.435* 
Thorax perimeter TP -0.180 NS -0.271* 0.270* 

Carcass compactness index CCI 0.258* -0.273* -0.039 NS 

Cuts (kg)     

Leg LEG -0.239* -0.201 NS 0.324* 

Loin LOI -0.570* -0.324* 0.643* 
Rib RIB 0.061 NS -0.144 NS 0.097 NS 

Neck NEC -0.672* -0.446* 0.746* 

Shoulder SHO 0.161 NS -0.212 NS 0.023 NS 
NSp > 0.05; *p < 0.05. 
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Bone proportion showed significant negative correlation coefficients (p < 0.05) with morphometric measure 

and cut traits (CP, TW, TP, CCI, LOI and NEC); the other variables showed no significant correlations (p > 0.05) 

(Table 4). These results agree with Díaz et al. (2004) and Ekiz et al. (2020), who reported that bone proportion had 

negative and significant correlations with traits associated with weight, carcass measurements and indexes. 

Except for CP, CCI, RIB, SHO, LEGY, RIBY and NECY, the other variables showed significant correlations 

with fat proportion (p < 0.05) (Table 4). Among these traits, the ones that showed the highest correlations 

were CW, TW, LOI and NEC, as well as in a study of Santos, Silvestre, Azevedo, and Silva (2017), who reported 

significant and positive correlations of fat proportion with cold carcass weight, carcass measures and meat 

cuts of the carcass of lactating goat kids. 

Regardless of whether the correlations were positive or negative, it can be observed that most of them 

were significant (p ˂ 0.05), indicating that these variables can be used as indicators for tissue proportion. 

Prediction of carcass tissue composition using stepwise multiple regression analysis of the original 

variables 

The regression equations for predicting tissue composition by stepwise multiple regression analysis of the 

original variables are presented in Table 5. According to the analysis, the independent variables CW, CCI, LOI 

and SHO were the best predictors of muscle proportion, explaining 63.6% of the variation in muscle 

proportion based on R².  

Table 5. Prediction equations for tissue composition according to stepwise multiple regression analysis of the original variables. 

Dependent 

variable 
Number Equation Cp R² MSE P Value 

Muscle  

proportion 

 (%) 

1 Y = 91.961 – 0.768 × CW 27.290 0.474 2.831 <.0001 

2 Y = 68.314 – 0.798 × CW + 57.885 × CCI 9.595 0.574 2.563 <.0001 

3 Y = 69.817 – 0.653 × CW + 57.293 × CCI – 4.227 × LOI 7.392 0.596 2.514 <.0001 

4 Y = 68.151 – 0.493 × CW + 39.931 × CCI – 9.014 × LOI + 6.582 × SHO 1.438 0.636 2.401 <.0001 

Bone  

proportion 

 (%) 

1 Y = 21.853 – 3.940 × NEC 16.141 0.199 2.032 <.0001 

2 Y = 29.708 – 31.432 × CCI – 4.076 × NEC 8.044 0.287 1.930 <.0001 

3 Y = 21.476 + 0.264 × LL – 29.227 × CCI – 5.984 × NEC 2.676 0.351 1.853 <.0001 

4 Y = 25.638 + 0.331 × LL – 0.117 × TP – 23.331 × CCI – 5.927 × NEC 1.411 0.379 1.824 <.0001 

5 Y = 25.682 + 0.374 × LL + 0.087 × CP – 0.189 × TP – 28.207 × CCI – 6.420 × NEC 0.639 0.403 1.801 <.0001 

6 
Y = 21.476 + 0.110 × CCY + 0.404 × LL + 0.093 × CP – 0.208 × TP – 33.589 × CCI 

– 6.094 × NEC 
0.512 0.422 1.785 <.0001 

Total fat 

proportion 

 (%) 

1 Y = 3.052 + 8.331 × NEC 2.420 0.556 3.660 <.0001 

2 Y = 5.718 + 8.137 × NEC – 0.364 × NECY 0.429 0.579 3.518 <.0001 

Mallows’ Cp (Cp); Coefficient of determination (R²); Mean square error (MSE); Croup width (CW); Carcass compactness index (CCI); Loin (LOI); Shoulder 

(SHO); Neck (NEC); Leg length (LL); Thorax perimeter (TP); Croup perimeter (CP); Cold carcass yield (CCY); Neck yield (NECY). 

However, the results based on Cp values indicate that the proposed models showed a lack of fit. For 

acceptable models within a subset of variables, the Cp values need to be close to the number of predictors plus the 

constant, which indicates that the model is relatively unbiased in estimating the true regression coefficients and 

predicting future responses (Kazemi, Mohamed, Shareef, & Zayandehroodi, 2013). Such results may be directly 

related to the presence of multicollinearity among the independent variables. The variables used in the models 

were moderately correlated (1<VIF<5); thus, the use of carcass variables should be applied with caution, as 

multicollinearity is associated with unstable estimates of the regression coefficients. 

In studies with these same perspectives, Díaz et al. (2004) determined that the best prediction equation 

for carcass muscle proportion of lactating Manchego lambs included proportion of kidney knob channel fat, 

fat thickness, CIL and fore cannon bone weight as independent variables. In lambs of the Churra Tensina 

breed, the regression equation included carcass width and kidney knob channel fat weight as independent 

variables to better predict muscle proportion (Carrasco, Ripoll, Panea, Álvarez-Rodríguez, & Joy, 2009). Ekiz 

et al. (2020) reported kidney knob and channel fat percentage as the best predictor of muscle proportion. The 

equations reported by Díaz et al. (2004) and Carrasco et al. (2009) obtained similar accuracy when compared 

to the present study (R² values = 0.63 and 0.58, respectively), and higher accuracy when compared to the study 

of Ekiz et al. (2020), who evaluated goats of the Gokceada breed, and found R² value = 0.21. According to Ekiz 

et al. (2020), the differences between the studies in terms of accuracy may be due to species differences, as 

well as differences in the number of independent variables allocated in the model. 
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The variables LL, CP, TP, CCI, and NEC were included in the equation for predicting bone proportion 

(Table 5). These five variables explained only 40.3% of the variation in bone proportion, which indicates that 

the prediction of bone proportion using this model was low. It was expected that, among the proposed models, 

this one would be the best for predicting bone proportion, however, based on the Cp values, the best fitted model 

was the one that considered only the variables LL, CCI and NEC as predictors. Although there are differences in 

the literature to decide which individual variable is more appropriate to be used in the prediction of animal 

carcass, the accuracy of the prediction in relation to R² has been improved especially when more than one 

variable is considered in the model. In the present study, it was demonstrated that adding more predictor 

variables and improving the R² does not always produce an increase in the accuracy of the obtained estimates. 

In a previous study carried out to predict the bone proportion of Churra Tensina breed lambs, Carrasco et al. 

(2009) found out that the best obtained equation included kidney knob channel fat weight and conformation score 

(R² = 0.51). The equation reported by Díaz et al. (2004) included fat score and omental fat proportion to predict 

bone proportion of lactating lambs of the Manchego breed (R² = 0.76). On the other hand, Ekiz et al. (2020) included 

hind limb compactness and tail weight in the equation for predicting bone proportion (R² = 0.62). 

According to the results of stepwise multiple regression analysis of the original variables, two variables 

(NEC and NECY) were determined to predict the proportion of total fat. This prediction equation explained 

57.9% of the proportion of total fat. Díaz et al. (2004), Carrasco et al. (2009) e Ekiz et al. (2020) predicted the 

proportion of total fat with higher accuracies (R² = 0.84, 0.73 and 0.68, respectively). In the study carried out 

by Díaz et al. (2004), the equation of the obtained model included fat variables (fat thickness, fat score and 

kidney knob channel fat proportion) for the prediction of fat proportion. In the study carried out by Carrasco 

et al. (2009), the equation model included kidney knob channel fat weight, carcass width, and carcass internal 

length as independent variables. 

In the present study, the predicted bone proportion was less accurate (lower R²) than the muscle and fat 

proportions (Table 5). On the contrary, Ekiz et al. (2020) found that the amount of explained variation was 

lower in the prediction equation for muscle proportion than that for bone and fat. As for the regression 

equations for predicting tissue compositions, it is worth mentioning that the morphometric measures were 

not allowed in the models except for CW, LL and TP. In a study carried out with goats of the Gokceada breed, 

Ekiz et al. (2020) also observed the lack of relationship between carcass size measures and tissue composition. 

According to Cadavez (2009), carcass measures reflect skeletal size rather than carcass tissue composition. 

Based on the observed correlations between tissue composition and carcass characteristics (Table 4), it 

would be expected for other carcass measures to be included in the prediction equations. In that case, it is 

suggested the problem of multicollinearity, since moderate multicollinearity problems (1 < VIF < 5) were 

observed in the present study. 

According to the present results, the prediction equations obtained by regression of the original variables 

seem to be insufficient to accurately predict tissue composition, since the amount of explained variation was 

low for bone proportion and moderate for muscle and fat proportion. On the other hand, the linear and 

circular carcass measures considered in the study were excluded from the models during the stepwise 

regression selection procedures, which indicate that these variables were poor predictors for the proportions 

of muscle, bone, and total fat in Santa Inês sheep. 

Prediction of carcass tissue composition using stepwise regression of latent variables 

Table 6 presents the results of sphericity test of Barlett and Kaiser-Meyer-Olkin (KMO), which are essential 

prerequisites for factor analysis. In other words, significant results from both tests show that the data are suitable 

for factor analysis. Considering the values obtained by Bartlett’s test (p < 0.05) and KMO (0.702) to test the 

divisibility of the correlation matrix of the factors, the data were considered suitable for factor analysis. 

Table 6. Sampling adequacy by Barlett’s test of sphericity and the KMO (Kaiser-Meyer-Olkin) test. 

Bartlett’s sphericity test  

DF 325 

Chi-Square 4761.91 

Pr > Chi Sq <.0001 

KMO test (Kaiser-Meyer-Olkin) --- 0.702 

 

The values of the factor loadings obtained by Varimax rotation, communalities, eigenvalues and explained 

variance are described in Table 7. It is observed that retaining factors through principal component analysis 
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and choosing the number of factors through Kaiser’s criterion made it possible to extract six factors 

(eigenvalues>1). These six factors were able to explain about 85.40% of the original variance of the variables. 

This value proved to be quite significant, and it represents little loss of information, indicating that the 

analysis summarized most of the information in a minimum number of factors needed to explain the 

maximum variance represented by the original variables. 

The communality presented in Table 7 is the proportion of each variable’s variability that is explained by 

the factors. The closer to 1, the better the variable explains the variation in the factors. Hair Jr., Black, Babin, 

Anderson, and Tatham (2009) describe that at least half of the variance of each variable should be taken into 

account, thus, using this guideline, all variables with communality lower than 0.50 present insufficient 

explanation. In Table 6, all variables presented communality greater than 0.50, indicating that the proportion 

of variability is adequate to explain the factors. 

Table 7. Results of factor analysis applied to the independent variables. 

Variables Factor 1  Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 C 

LWS 0.762  0.122 -0.404 0.349 0.315 -0.035 0.980 

EBW 0.773  0.131 -0.353 0.342 0.348 -0.032 0.978 

HCW 0.783  0.078 0.074 0.466 0.368 -0.017 0.978 

CCW 0.779  0.011 0.112 0.469 0.376 -0.052 0.984 

BY -0.102  -0.135 0.904 0.153 -0.033 0.033 0.871 

HCY -0.046  -0.112 0.956 0.159 0.056 0.035 0.959 

CCY -0.085  -0.215 0.939 0.130 0.045 -0.022 0.955 

CEL 0.712  0.319 -0.051 0.002 0.089 -0.185 0.653 

CIL 0.600  0.550 -0.184 0.080 0.361 -0.049 0.835 

LL 0.617  0.598 -0.171 -0.010 0.087 -0.051 0.778 

CW 0.523  0.473 -0.355 0.121 0.450 0.074 0.846 

TW 0.454  0.409 -0.396 0.094 0.526 0.092 0.824 

CP 0.179  -0.071 0.015 0.167 0.859 0.063 0.807 

LP -0.123  -0.774 0.091 0.116 0.171 -0.061 0.670 

TP 0.329  0.137 0.162 -0.042 0.699 -0.133 0.661 

CCI 0.419  -0.546 0.202 0.573 0.230 -0.047 0.898 

LEG 0.302  0.220 0.113 0.431 0.156 0.770 0.956 

LOI 0.235  0.697 -0.034 0.462 0.248 0.340 0.932 

RIB 0.076  0.212 0.389 0.760 -0.062 0.069 0.789 

NEC 0.309  0.706 -0.268 0.244 0.347 0.089 0.855 

SHO -0.163  0.028 0.109 0.863 0.131 0.178 0.833 

LEGY -0.357  0.229 -0.005 0.000 -0.153 0.872 0.963 

LOIY -0.251  0.789 -0.147 0.188 0.040 0.413 0.916 

RIBY -0.570  0.210 0.280 0.342 -0.387 0.091 0.723 

NECY -0.802  -0.015 -0.005 0.199 0.012 -0.194 0.720 

SHOY -0.791  0.016 -0.010 0.382 -0.186 0.182 0.840 

Eigenvalues 9.802  4.437 4.105 1.702 1.119 1.039 --- 

Variance (%) 37.70  17.06 15.79 6.54 4.30 4.00 85.40 

Communality (C); Live weight at slaughter (LWS); Empty body weight (EBW); Hot carcass weight (HCW); Cold carcass weight (CCW); Biological yield (BY); 

Hot carcass yield (HCY); Cold carcass yield (CCY); Carcass external length (CEL); Carcass internal length (CIL); Leg length (LL); Croup width (CW); Thorax 

width (TW); Croup perimeter (CP); Leg perimeter (LP); Thorax perimeter (TP); Carcass Compactness Index (CCI); Leg (LEG); Loin (LOI); Rib (RIB); Neck 

(NEC); Shoulder (SHO); Leg yield (LEGY); Loin yield (LOIY); Rib yield (RIBY); Neck yield (NECY); Shoulder yield (SHOY). 

Table 8 illustrates the results of the stepwise multiple regression analysis with the new independent 

variables (latent) from the factor analysis. 

According to the analysis, all latent variables selected through principal component analysis (Factor1, 2, 

3, 4, 5 and 6) were found to be best predictors of muscle proportion, explaining 62.5% of the variation in 

muscle proportion. However, the variation in muscle proportion explained by these latent variables is lower 

than the result found in the regression analysis of the original variables (Table 5), with the best model (CW, 

CCI, LOI and SHO) explaining 63.7% of the variation for muscle proportion. Nevertheless, the latent variables 

should be considered as the equation with the best model fit, due to the fact that the Cp value presents the 

same number of predictor variables plus the constant (7.000). Such results may be directly related to the fact 

that there is no multicollinearity among the predictor variables (VIF = 1). According to Tariq et al. (2012), one 

of the most effective methods to solve the multicollinearity problem in multiple regression analysis is to use 

the factor loadings from factor analysis, through the latent variables.  
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Table 8. Prediction equations for tissue composition according to stepwise multiple regression analysis of the latent variables. 

Dependent 

variable 
Number Equation C(p) R² MSE P Value 

Muscle  

proportion, % 

1 Y = 68.142 – 2.328 × Factor3 48.630 0.360 9.745 <.0001 

2 Y = 68.142 – 1.200 × Factor1 – 2.328 × Factor3 31.978 0.456 8.394 <.0001 

3 Y = 68.142 – 1.200 × Factor1 + 1.138 × Factor2 – 2.328 × Factor3 17.213 0.542 7.159 <.0001 

4 
Y = 68.142 – 1.200 × Factor1 + 1.138 × Factor2 – 2.328 × Factor3 – 0.795 × 

Factor5 
11.027 0.584 6.589 <.0001 

5 
Y = 68.142 – 1.200 × Factor1 + 1.138 × Factor2 – 2.328 × Factor3 – 0.795 × 

Factor5 – 0.581 × Factor6 
8.651 0.607 6.317 <.0001 

6 
Y = 68.142 – 1.200 × Factor1 + 1.138 × Factor2 – 2.328 × Factor3 + 0.531 × 

Factor4 – 0.795 × Factor5 – 0.581 × Factor6 
7.000 0.625 6.099 <.0001 

Bone proportion, 

% 

1 Y = 18.870 – 0.746 × Factor5 8.629 0.109 4.590 0.0027 

2 Y = 18.870 – 0.673 × Factor4 – 0.746 × Factor5 2.181 0.198 4.186 0.0002 

Total fat 

proportion, % 

1 Y = 9.359 + 1.518 × Factor3 32.048 0.283 5.907 <.0001 

2 Y = 9.359 + 0.880 × Factor1 + 1.518 × Factor3 19.703 0.378 5.189 <.0001 

3 Y = 9.359 + 0.880 × Factor1 + 1.518 × Factor3 + 0.709 × Factor5 12.392 0.440 4.735 <.0001 

4 
Y = 9.359 + 0.880 × Factor1 – 0.677 × Factor2 + 1.518 × Factor3 + 0.709 × 

Factor5 
5.899 0.496 4.315 <.0001 

Mallows’ Cp (Cp); Coefficient of determination (R²); Mean square error (MSE); Croup width (CW); Carcass compactness index (CCI); Loin (LOI); Shoulder 

(SHO); Neck (NEC); Leg length (LL); Thorax perimeter (TP); Croup perimeter (CP); Cold carcass yield (CCY); Neck yield (NECY). 

The latent variables Factor 4 and Factor 5 were included in the equation to predict bone proportion (Table 

8), however, these two latent variables explained only 19.8%, which is a value expressly lower than that found 

in Table 5 (35.1%) with the variables LL, CCI and NEC, which were selected by the stepwise procedure with 

the best model developed for bone proportion. Based on the factor loadings presented in Table 7 for the latent 

variables corresponding to Factor 1 and 3, the variables that contributed the most were those related to body 

weight and measures (CEL, CIL, LL and CW) and yield characteristics (except for LEGY and LOIY). CCI, which 

was considered in the previous model (Table 5), was not considered in the present model since it did not show 

expressive factor loading in Factors 1 and 3. 

According to the results presented in Table 8, four latent variables (Factors 1, 2, 3 and 5) were determined 

to predict the proportion of total fat, explaining 49.6% of the proportion of total fat. As observed for muscle 

and bone proportion, the proportion of total fat also showed lower explanation when compared to the 

previously proposed equation in Table 5, which showed 57.9% explanation.  

Previous studies have been carried out using the factor scores from factor analysis (latent variables) in the 

multiple regression equations (Çelik et al., 2018; Önk et al., 2018; Tahtali, 2019; Tariq et al., 2012). The 

coefficients of determination found in their study ranged from 0.754 to 0.966, showing to be suitable for use 

as independent variables in regression analysis. In the present study, the coefficients of determination showed low 

to moderate values (R² ranging from 0.198 to 0.607) for tissue composition. With these results it can be concluded 

that the developed predictive models are not effective in predicting the composition of carcass tissues.  

However, for comparison purposes, it can be concluded that the developed models of the latent variables 

promote a better fit in the equations based on the Cp values. Despite presenting lower R² values, the presence 

of moderate multicollinearity among the original variables was clear (1 < VIF < 5), indicating increase in the 

variance of the regression coefficients due to the correlations among the predictors of the model. 

Conclusion 

The use of latent variables from factor analysis in multiple regression models eliminates the problem of 

multicollinearity of the explanatory variables, thus improving the accuracy of interpretation of results by 

proposing a better fit of the mathematical model.  

However, the R² values were moderate for muscle proportion and total fat, and low for bone proportion, 

which indicate that more appropriate independent variables should be used to better predict the proportion 

of tissues in Santa Inês sheep. 
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