Development and evaluation of prediction equations for methane emission from Nellore cattle Dry matter intake (DMI

  • Tatiana Lucila Pires Sobrinho Universidade Estadual Paulista
  • Renata Helena Branco Instituto de Zootecnia
  • Elaine Magnani Instituto de Zootecnia
  • Alexandre Berndt Empresa Brasileira de Pesquisa Agropecuária
  • Roberta Carrilho Canesin Instituto de Zootecnia
  • Maria Eugênia Zerlotti Mercadante Instituto de Zootecnia http://orcid.org/0000-0002-1218-5378
Palavras-chave: beef cattle, dry matter intake, greenhouse gas, prediction, sulfur hexafluoride.

Resumo

 

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Tatiana Lucila Pires Sobrinho, Universidade Estadual Paulista
Universidade Estadual Paulista Julio de Mesquita Filho Faculdade de Ciencias Agrarias e Veterinarias Campus de Jaboticabal - Produção Animal, Jaboticabal, SP - Brazil
Renata Helena Branco, Instituto de Zootecnia
Instituto de Zootecnia - Centro APTA Bovinos de Corte, Sertãozinho, São Paulo - Brazil
Elaine Magnani, Instituto de Zootecnia
Instituto de Zootecnia - Centro APTA Bovinos de Corte, Sertãozinho, São Paulo - Brazil
Alexandre Berndt, Empresa Brasileira de Pesquisa Agropecuária

EMBRAPA - Centro de Pesquisa em Pecuária
São Carlos, São Paulo - Brazil

Roberta Carrilho Canesin, Instituto de Zootecnia
Instituto de Zootecnia - Centro APTA Bovinos de Corte, Sertãozinho, São Paulo - Brazil
Maria Eugênia Zerlotti Mercadante, Instituto de Zootecnia
Instituto de Zootecnia - Centro APTA Bovinos de Corte, Rodovia Carlos Tonani, km 94 , Sertãozinho, São Paulo 14174000 - Brazil

Referências

Association Official Analytical Chemists [AOAC]. (1990). Official Methods of Analysis (15th ed.). Arlington, VA: AOAC International.

Axelsson, J. (1949). The amount of produced methane energy in the European metabolic experiments with adult cattle. Annals of the Royal Agricultural College of Sweden, 16, 404-419.

Benchaar, C., Pomar, C., & Chiquette, J. (2001). Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Canadian Journal of Animal Science, 81(4), 563-574. doi: doi.org/10.4141/A00-119.

Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition, 19(1), 511-522. doi: 10.1079/BJN19650046.

Boadi, D., Benchaar, C., Chiquette, J., & Massé, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84(3), 319-335. doi: 10.4141/A03-109.

Caro, D., Davis, S. J., Bastianoni, S., & Caldeira, K. (2014). Global and regional trends in greenhouse gas emissions from livestock. Climatic Change, 126(1-2), 203-216. doi: 10.1007/s10584-014-1197-x.

Corvino, T. L. S., Branco, R. H., Bonilha, S. F. M., Castilhos, A. M., Figueiredo, L. A., Razook, A. G., & Mercadante, M. E. Z. (2011). Residual feed intake and relationships with performance of Nellore cattle selected for post weaning weight. Revista Brasileira de Zootecnia, 40, 929-937. doi: 10.1590/S1516-35982011000400030.

Dong, Y., Bae, H. D., McAllister, T. A., Mathison, G. W., & Cheng, K. J. (1997). Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Canadian Journal of Animal Science, 77(2), 269-278. doi: 10.4141/A96-078.

Ellis, J. L., Kebreab, E., Odongo, N. E., Beauchemin, K., McGinn, S., Nkrumah, J. D., ... McBride, B. W. (2009). Modeling methane production from beef cattle using linear and nonlinear approaches. Journal of Animal Science, 87(4), 1334-1345. doi: 10.2527/jas.2007-0725.

Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal of Dairy Science, 90(7), 3456-3466. 10.3168/jds.2006-675.

Etheridge, R. D., Pesti, G. M., & Foster, E. H. (1998). A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (Leco CNS 2000) on samples typical of an animal nutrition analytical laboratory. Animal Feed Science and Technology, 73(1-2), 21-28. doi: 10.1016/S0377-8401(98)00136-9.

Fitzsimons, C., Kenny, D. A., Deighton, M. H., Fahey, A. G., & McGee, M. (2013). Methane emissions, body composition, and rumen fermentation traits of beef heifers differing in residual feed intake. Journal of Animal Science, 91(12), 5789-5800. doi: /10.2527/jas.2013-6956.

Goering, H. K., & Van Soest, P. J. (1970). Forage Fiber Analysis. USDA Agricultural Research Service. Handbook number 379 (16th ed). Washington, DC: US Government Printing Office.

Grobler, S. M., Scholtz, M. M., van Rooyan, H., Mpayipheli, M., & Neser, F. W. C. (2014). Methane production in different breeds, grazing different pastures or fed a total mixed ration, as measured by a Laser Methane Detector. South African Journal of Animal Science, 44(5), 12-16. doi: 10.4314/sajas.v44i5.3.

Hegarty, R. S., & Gerdes, R. (1999). Hydrogen production and transfer in the rumen. Recent Advances in Animal Nutrition in Australia, 12, 37-44.

Holter, J. B., & Young, A. J. (1992). Nutrition, feeding and calves: methane prediction in dry and lactating Holstein cows. Journal of Dairy Science, 75(2165-2175). doi: 10.3168/jds.S0022-0302(92)77976-4.

Hulshof, R. B. A., Berndt, A., Gerrits, W. J. J., Dijkstra, J., Van Zijderveld, S. M., Newbold, J. R., & Perdok, H. B. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of Animal Science, 90(7), 2317-2323. doi: 10.2527/jas.2011-4209.

Intergovernamental Panel on Climate Change [IPCC]. (2006). IPCC Guidelines for National Greenhouse Gasinventories Change. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds), Agriculture, Forestry and Other Land Use. Tokio, Japan: IPCC.

Johnson, K., Huyler, M., Westberg, H., Lamb, B., & Zimmerman, P. (1994). Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environmental science & technology, 28(2), 359-362. doi: 10.1021/es00051a025.

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. doi: 10.2527/1995.7382483x.

Kebreab, E., Clark, K., Wagner-Riddle, C., & France, J. (2006). Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Canadian Journal of Animal Science, 86(2), 135-157. doi: 10.4141/A05-010.

Mathison, G. (1997). Effect of canola oil on methane production in steers. Canadian Journal of Animal Science, 77, 545-546.

Mercadante, M. E. Z., Caliman, A. P. d. M., Canesin, R. C., Bonilha, S. F. M., Berndt, A., Frighetto, R. T. S., ... Branco, R. H. (2015). Relationship between residual feed intake and enteric methane emission in Nellore cattle. Revista Brasileira de Zootecnia, 44(7), 255-262. doi: 10.1590/S1806-92902015000700004.

Mills, J. A. N., Kebreab, E., Yates, C. M., Crompton, L. A., Cammell, S. B., Dhanoa, M. S., ... France, J. (2003). Alternative approaches to predicting methane emissions from dairy cows. Journal of Animal Science, 81(12), 3141-3150. doi: 10.2527/2003.81123141x.

Moe, P. W., & Tyrrell, H. F. (1979). Methane production in dairy cows. Journal of Dairy Science, 62(10), 1583-1586. doi: 10.3168/jds.S0022-0302(79)83465-7.

Monteiro, A. L. G., Faro, A. M. C. d. F., Peres, M. T. P., Batista, R., Poli, C. H. E. C., & Villalba, J. J. (2018). The role of small ruminants on global climate change. Acta Scientiarum. Animal Sciences, 40(e43124), 1-11. doi: http://dx.doi.org/10.4025/actascianimsci.v40i1.43124.

National Research Council [NRC]. (2001). Nutrient Requirements of Dairy Cattle (7th rev. ed.). Washington, DC: National Academy Press.

Patra, A. K. (2013). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livestock science, 155(2–3), 244-254. doi: 10.1016/j.livsci.2013.05.023

Patra, A. K. (2017). Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and adaptation strategies for global change, 22(4), 629-650. doi: 10.1007/s11027-015-9691-7.

Statistical Analisys System [SAS]. (2013). SAS/STAT User guide, Version 9.4. Cary, NC: SAS Institute Inc.

Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. doi: 10.2527/1992.70113562x.

St-Pierre, N. R. (2003). Reassessment of biases in predicted nitrogen flows to the duodenum by NRC 2001. Journal of Dairy Science, 86(1), 344-350. doi: 10.3168/jds.S0022-0302(03)73612-1.

United States Environmental Protection Agency [USEPA]. (2015). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 – 2013. Washington, DC.

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2.

Westberg, H. H., Johnson, K. A., Cossalman, M. W., & Michal, J. J. (1998). A SF6 tracer technique: methane measurement from ruminants. Pullman, WA: Washington State University.

Wilkerson, V. A., Casper, D. P., & Mertens, D. R. (1995). The Prediction of Methane Production of Holstein Cows by Several Equations1. Journal of Dairy Science, 78(11), 2402-2414. doi: 10.3168/jds.S0022-0302(95)76869-2.

Publicado
2018-12-03
Como Citar
Sobrinho, T. L. P., Branco, R. H., Magnani, E., Berndt, A., Canesin, R. C., & Mercadante, M. E. Z. (2018). Development and evaluation of prediction equations for methane emission from Nellore cattle Dry matter intake (DMI. Acta Scientiarum. Animal Sciences, 41(1), e42559. https://doi.org/10.4025/actascianimsci.v41i1.42559
Seção
Nutrição de Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus