Effect of enzyme addition on energy utilization and performance of broiler chickens fed wheat-based diet with different metabolizable energy levels

  • Seyed adel Moftakharzadeh University of Tabriz
  • Hossein Janmohammadi University of Tabriz
  • Akbar Taghizadeh University of Tabriz
  • Ruhollah Kianfar University of Tabriz
  • Majid Geshlog Olyayee University of Tabriz http://orcid.org/0000-0002-8764-2895

Resumo

An experiment was carried out to investigate the effect of multi-enzyme in high and low levels of metabolizable energy (13.81 and 11.51 MJ kg-1 diet) on performance and energy utilization of broilers fed wheat-soybean meal diets from 0 to 21 days of age. Result showed that birds fed diets containing 11.51 MJ kg-1 consumed significantly (p < 0.05) more feed than diets containing 13.81 MJ kg-1, whereas daily gain and feed conversion ratio improved (p < 0.05) when enzyme was added to 11.51 MJ kg-1 diet. There was significant improvement in metabolizable energy, net energy for production, organic and dry matter digestibility in 0-21 when diets supplemented with enzyme (p < 0.05). Addition of enzyme to 11.51 MJ kg-1 containing diet significantly (p < 0.05) reduced heat production of birds in 0-10 d, whereas heat production was not changed in 21 days. Supplementation of 11.51 MJ kg-1 diet with enzyme improved the efficiency of ME use for carcass energy and protein retention of broilers (p < 0.05). Generally, the results of current study demonstrated that addition of enzyme to wheat-soybean diets improved NEp of broiler chickens while MEI was not changed and it seems NEp is a more sensitive energy utilization response criterion to use in evaluating broilers response to enzyme supplementation.

Downloads

Não há dados estatísticos.

Biografia do Autor

Hossein Janmohammadi, University of Tabriz
Professor of Animal Nutrition, Department of Animal Science
Akbar Taghizadeh, University of Tabriz
Professor of Animal Nutrition, Department of Animal Science
Ruhollah Kianfar, University of Tabriz
Assistant Professor of Animal Nutrition, Department of Animal Science
Majid Geshlog Olyayee, University of Tabriz
Assistant Professor of Animal Nutrition, Department of Animal Science

Referências

Adeola, O., Jendza, J. A., Southern, L. L., Powell, S., & Owusu-Asiedu, A. (2010). Contribution of exogenous dietary carbohydrases to the metabolizable energy value of corn distillers grains for broiler chickens. Poultry Science, 89(9), 1947-1954. doi: 10.3382/ps.2010-00706.

Almirall, M., Francesch, M., Perez-Vendrell, A. M., Brufau, J., & Esteve-Garcia, E. (1995). The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. The Journal of Nutrition, 125(4), 947-955. doi: 10.1093/jn/125.4.947.

Amerah, A. M., Ravindran, V., Lentle, R. G., & Thomas, D. G. (2008). Influence of particle size and xylanase supplementation on the performance, energy utilisation, digestive tract parameters and digesta viscosity of broiler starters. British Poultry Science, 49(4), 455-462. doi: 10.1080/00071660802251749

Association Official Analytical Chemist [AOAC]. (2005). Official Methods of Analysis (18th ed.). Gaitherburg, MD: AOAC International.

Barekatain, M. R., Antipatis, C., Choct, M., & Iji, P. A. (2013). Interaction between protease and xylanase in broiler chicken diets containing sorghum distillers’ dried grains with solubles. Animal Feed Science and Technology, 182(1-4), 71-81. doi: 10.1016/j.anifeedsci.2013.04.002.

Bregendahl, K., Sell, J. L., & Zimmerman, D. R. (2002). Effect of low-protein diets on growth performance and body composition of broiler chicks. Poultry Science, 81(8), 1156-1167. doi: 10.1093/ps/81.8.1156.

Cho, J. H., Zhao, P., & Kim, I. H. (2012). Effects of emulsifier and multi-enzyme in different energy densitydiet on growth performance, blood profiles, and relative organ weight in broiler chickens. Journal of Agricultural Science, 4(10), 161-165. doi: 10.5539/jas.v4n10p161.

Choct, M., Sinlae, M., Al-Jassim, R. A. M., & Pettersson, D. (2006). Effects of xylanase supplementation on between-bird variation in energy metabolism and the number of Clostridium perfringens in broilers fed a wheat-based diet. Australian Journal of Agricultural Research, 57(9), 1017-1021. doi: 10.1071/AR05340.

Cowieson, A. J. (2010). Strategic selection of exogenous enzymes for corn/soy-based poultry diets. The Journal of Poultry Science, 47(1), 1-7. doi: 10.2141/jpsa.009045.

De Groote, G. (1974). A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. British Poultry Science, 15(1), 75-95. doi: 10.1080/00071667408416082.

Esmaeilipour, O., Moravej, H., Shivazad, M., Rezaian, M., Aminzadeh, S., & Van Krimpen, M. M. (2012). Effects of diet acidification and xylanase supplementation on performance, nutrient digestibility, duodenal histology and gut microflora of broilers fed wheat based diet. British Poultry Science, 53(2), 235-244. doi: 10.1080/00071668.2012.681771.

Fan, C. L., Han, X. Y., Xu, Z. R., Wang, L. J., & Shi, L. R. (2009). Effects of β-glucanase and xylanase supplementation on gastrointestinal digestive enzyme activities of weaned piglets fed a barley-based diet. Journal of Animal Physiology and Animal Nutrition, 93(2), 271-276. doi: 10.1111/j.1439-0396.2008.00816.x.

Gitoee, A., Janmohammadi, H., Taghizadeh, A., & Rafat, S. A. (2015). Effects of a multi-enzyme on performance and carcass characteristics of broiler chickens fed corn-soybean meal basal diets with different metabolizable energy levels. Journal of Applied Animal Research, 43(3), 295-302. doi: 10.1080/09712119.2014.963103.

Hashemipour, H., Khaksar, V., Rubio, L. A., Veldkamp, T., & Van Krimpen, M. M. (2016). Effect of feed supplementation with a thymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Animal Feed Science and Technology, 211, 117-131. doi: 10.1016/j.anifeedsci.2015.09.023.

Hellwing, A. L. F., Tauson, A.-H., & Skrede, A. (2006). Effect of bacterial protein meal on protein and energy metabolism in growing chickens. Archives of Animal Nutrition, 60(5), 365-381. doi: 10.1080/17450390600884351.

Kiarie, E., Romero, L. F., & Ravindran, V. (2014). Growth performance, nutrient utilization, and digesta characteristics in broiler chickens fed corn or wheat diets without or with supplemental xylanase. Poultry Science, 93(5), 1186-1196. doi: 10.3382/ps.2013-03715.

Kocher, A., Choct, M., Ross, G., Broz, J., & Chung, T. K. (2003). Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. The Journal of Applied Poultry Research, 12(3), 275-283. doi: 10.1093/japr/12.3.275.

Moftakharzadeh, S. A., Moravej, H., & Shivazad, M. (2017). Effect of using the Matrix Values for NSP-degrading enzymes on performance, water intake, litter moisture and jejunal digesta viscosity of broilers fed barley-based diet. Acta Scientiarum. Animal Sciences, 39(1), 65-72. doi: 10.4025/actascianimsci.v39i1.33070 .

Nian, F., Guo, Y. M., Ru, Y. J., Li, F. D., & Peron, A. (2011). Effect of exogenous xylanase supplementation on the performance, net energy and gut microflora of broiler chickens fed wheat-based diets. Asian-Australasian Journal of Animal Sciences, 24(3), 400-406. doi: 10.5713/ajas.2011.10273.

O’Neill, H. V. M., Liu, N., Wang, J. P., Diallo, A., & Hill, S. (2012). Effect of xylanase on performance and apparent metabolisable energy in starter broilers fed diets containing one maize variety harvested in different regions of china. Asian-Australasian Journal of Animal Sciences, 25(4), 515. doi: 10.5713/ajas.2011.11314

Olukosi, O. A., Cowieson, A. J., & Adeola, O. (2008). Energy utilization and growth performance of broilers receiving diets supplemented with enzymes containing carbohydrase or phytase activity individually or in combination. British Journal of Nutrition, 99(3), 682-690. doi: 10.1017/S0007114507815807.

Pirgozliev, V., Bedford, M. R., Acamovic, T., Mares, P., & Allymehr, M. (2011). The effects of supplementary bacterial phytase on dietary energy and total tract amino acid digestibility when fed to young chickens. British Poultry Science, 52(2), 245-254. doi: /10.1080/00071668.2011.560596.

Pirgozliev, V., & Rose, S. P. (1999). Net energy systems for poultry feeds: a quantitative review. World's Poultry Science Journal, 55(1), 23-36. doi: 10.1079/WPS19990003.

Pirgozliev, V., Rose, S. P., Pellny, T., Amerah, A. M., Wickramasinghe, M., Ulker, M., … Lovegrove, A. (2015). Energy utilization and growth performance of chickens fed novel wheat inbred lines selected for different pentosan levels with and without xylanase supplementation. Poultry Science, 94(2), 232-239. doi: 10.3382/ps/peu059.

Pirgozliev, V. R., Rose, S. P., Kettlewell, P. S., & Bedford, M. R. (2001). Efficiency of utilization of metabolizable energy for carcass energy retention in broiler chickens fed different wheat cultivars. Canadian Journal of Animal Science, 81(1), 99-106. doi: 10.4141/A00-014.

Ravn, J. L., Martens, H. J., Pettersson, D., & Pedersen, N. R. (2016). A commercial GH 11 xylanase mediates xylan solubilisation and degradation in wheat, rye and barley as demonstrated by microscopy techniques and wet chemistry methods. Animal Feed Science and Technology, 219, 216-225. doi: 10.1016/j.anifeedsci.2016.06.020.

Ribeiro, T., Lordelo, M. M. S., Ponte, P. I. P., Maçãs, B., Prates, J. A. M., Fontes, M. A., ... Fontes, C. M. G. A. (2011). Levels of endogenous β-glucanase activity in barley affect the efficacy of exogenous enzymes used to supplement barley-based diets for poultry. Poultry Science, 90(6), 1245-1256. doi: 10.3382/ps.2010-01218.

Rodríguez, M. L., Rebolé, A., Velasco, S., Ortiz, L. T., Treviño, J., & Alzueta, C. (2012). Wheat and barley based diets with or without additives influence broiler chicken performance, nutrient digestibility and intestinal microflora. Journal of the Science of Food and Agriculture, 92(1), 184-190. doi: 10.1002/jsfa.4561.

Sakomura, N. K., Silva, R., Couto, H. P., Coon, C., & Pacheco, C. R. (2003). Modeling metabolizable energy utilization in broiler breeder pullets. Poultry Science, 82(3), 419-427. doi: 10.1093/ps/82.3.419.

Statistical Analysis System [SAS]. (2004). SAS/STAT User guide, Version 9.0. Cary, NC: SAS Institute Inc.

Short, F. J., Gorton, P., Wiseman, J., & Boorman, K. N. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Animal Feed Science and Technology, 59(4), 215-221. doi: 10.1016/0377-8401(95)00916-7.

Wang, Z. R., Qiao, S. Y., Lu, W. Q., & Li, D. F. (2005). Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Science, 84(6), 875-881. doi: 10.1093/ps/84.6.875.

Wu, D., Choct, M., Wu, S. B., Liu, Y. G., & Swick, R. A. (2017). Carbohydrase enzymes improve performance of broilers fed both nutritionally adequate and marginal wheat-based diets. Journal of Applied Animal Nutrition, 5, 1-7. doi: 10.1017/jan.2017.5.

Zanella, I., Sakomura, N. K., Silversides, F. G., Fiqueirdo, A., & Pack, M. (1999). Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poultry Science, 78(4), 561-568. doi: 10.1093/ps/78.4.561.

Zhou, Y., Jiang, Z., Lv, D., & Wang, T. (2009). Improved energy-utilizing efficiency by enzyme preparation supplement in broiler diets with different metabolizable energy levels. Poultry Science, 88(2), 316-322. 10.3382/ps.2008-00231.

Zimonja, O., & Svihus, B. (2009). Effects of processing of wheat or oats starch on physical pellet quality and nutritional value for broilers. Animal Feed Science and Technology, 149(3-4), 287-297. doi: 10.1016/j.anifeedsci.2008.06.010.

Publicado
2019-04-08
Como Citar
Moftakharzadeh, S. adel, Janmohammadi, H., Taghizadeh, A., Kianfar, R., & Olyayee, M. G. (2019). Effect of enzyme addition on energy utilization and performance of broiler chickens fed wheat-based diet with different metabolizable energy levels. Acta Scientiarum. Animal Sciences, 41(1), e44585. https://doi.org/10.4025/actascianimsci.v41i1.44585
Seção
Nutrição de Não-Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus