Flaxseed oil and clove leaf essential oil in Zebrafish diet (Danio rerio)

  • Thiberio Carvalho da Silva Universidade do Estado do Amapá
  • Michele Silva Universidade Estadual de Maringá
  • Fabiana Carbonera Universidade Estadual de Maringá
  • Jesui Vergilio Visentainer Universidade Estadual de Maringá
  • Karina Sayuri Utsunomiya Universidade Estadual de Maringá
  • Eliane Gasparino Universidade Estadual de Maringá
  • Ricardo Ribeiro Universidade Estadual de Maringá
Palavras-chave: antioxidant; α-linolenic acid; DPPH; Daniorerio.

Resumo

Flaxseed oil is recognized as the plant source richest in α-linolenic acid, whereas clove leaf essential oil has a strong antioxidant capacity. The objective of this study was to determine the in vitro antioxidant capacity of diets containing a combination of flaxseed oil (FO) and clove leaf essential oil (CLEO), as well as to use zebrafish (Danio rerio) to assess their effect on the animals’ growth. Fifty days after hatching, a total of 420 male specimens (0.29 ± 0.04 g) were divided into seven groups for each diet and fed for 55 days to be used, with the diets being: control, absent FO and CLEO; 3% FO + 0.5% CLEO; 3% FO + 1% CLEO; 6% FO + 0.5% CLEO; 6% FO + 1% CLEO; 9% FO + 0.5% CLEO and 9% FO + 1% CLEO. Antioxidant activity was determined through DPPH (2,2-diphenyl-1-picrylhydrazyl) tests, showing interaction effect between factors (FO x CLEO, p < 0.05); the diets containing 1% combined with 3, 6 or 9% of FO presented means higher than those of the 0.5% diets. No mortality was observed during the experiment. For final weight and weight gain, there was no interaction effect (p > 0.05), only isolated effect for FO, with the fish fed 6 and 9% diets having the best results. Final total length and specific growth rates showed interaction effect (p < 0.05). As for specific growth rates, the best response was that of the diet with 6% FO and 0.5% CLEO. Final length showed increase with FO levels, even when there was association with 0.5 or 1% of CLEO. Therefore, combined use of 9% of FL with 0.5% of CLEO is recommended for zebrafish.

Downloads

Não há dados estatísticos.

Referências

Araújo, F. G., Costa, D. V., Machado, M. R. F., Paulino, R. R., Okamura, D., & Rosa, P. V. (2017). Dietary oils influence ovary and carcass composition and embryonic development of zebrafish. Aquaculture Nutrition, 23(4), 651-661. doi: 10.1111/anu.12432

Asimi, O. A., & Sahu, N. P. (2016). Effect of antioxidant rich spices, clove and cardamom extracts on the metabolic enzyme activity of Labeo rohita. Journal of Fisheries and Livestock Production, 4(1), 1-6. doi: 10.4172/2332-2608.1000157

Biondo, P. B. F., Carbonera, F., Zawadzki, F., Chiavelli, L. U. R., Pilau, E. J., Prado, I. N., & Visentainer, J. V. (2017). Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs and citrus. Current Bioactive Compounds, 13(2), 137-143. doi: 10.2174/1573407212666160614080846

Figueiredo, I., Claus, Oliveira, S. J. O., Almeida, V. C., Magon, T., & Visentainer, J. V. (2016). Fast derivatization of fatty acids in different meat samples for gas chromatography analysis. Journal of Chromatography A, 1456(22), 235-241. doi: 10.1016/j.chroma.2016.06.012

Gülçin, I., Elmastaş, M., & Aboul-Enein, H. Y. (2012). Antioxidant activity of clove oil – A powerful antioxidant source. Arabian Journal of Chemistry, 5(4), 489-499. doi: 10.1016/j.arabjc.2010.09.016

Halliwell, B., & Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine (4th ed.). Oxford, US: Oxford University Press.

Ikeda, A. K., Zuanon, J. A. S., Salaro, A. L., Freitas, M. B. D., Pontes, M. D., Souza, L. S., & Santos, M. V. (2011). Vegetable oil sources in diets for freshwater angelfish (Pterophyllum scalare, Cichlidae): growth and thermal tolerance. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 63(3), 670-677. doi: 10.1590/S0102-09352011000300019

Jirovetz, L., Buchbauer, G., Stoilova, I., Stoyanova, A., Krastanov, A., & Schmidt, E. (2006). Chemical composition and antioxidant properties of clove leaf essential oil. Journal of Agricultural and Food Chemistry, 54(17), 6303-6307. doi: 10.1021/jf060608c

Kiron, V., Fukuda, H., Takeuchi, T., & Watanabe, T. (1995). Essential fatty acid nutrition and defence mechanisms in rainbow trout Oncorhynchus mykiss. Comparative Biochemistry and Physiology Part A: Physiology, 111(3), 361-367. doi: 10.1016/0300-9629(95)00042-6

Lawrence, C. (2007). The husbandry of zebrafish (Daniorerio): A review. Aquaculture, 269(1-4), 1-20. doi: 10.1016/j.aquaculture.2007.04.077

Meinelt, T., Schulz, C., Wirth, M., Kürzinger, H., & Steinberg, C. (2000). Correlation of diets high in n-6 polyunsaturated fatty acids with high growth rate in Zebrafish (Danio rerio). Comparative Medicine, 50(1), 43-45.

Nayak, M., Saha, A., Pradhan, A., Samanta, M., & Giri, S. S. (2017). Dietary fish oil replacement by linseed oil: Effect on growth, nutrient utilization, tissue fatty acid composition and desaturase gene expression in silver barb (Puntius gonionotus) fingerlings. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 205(1), 1-12. doi: 10.1016/j.cbpb.2016.11.009

Ogata, M., Hoshi, M., Urano, S., & Endo, T. (2000). Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chemical and Pharmaceutical Bulletin, 48(10), 1467-1469. doi: 10.1248/cpb.48.1467

Popa, V. M., Gruia, A., Raba, D. N., Dumbraval, D., Moldovan, C., Bordean, D., & Mateescu, C. (2012). Fatty acids composition and oil characteristics of linseed (Linum Usitatissimum L.) from Romania. Journal of Agroalimentary Processes and Technologies, 18(2), 136-140.

Ribas, L., & Piferrer, F. (2014). The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture, 6(4), 209-240. doi: 10.1111/raq.12041

Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The lipids. In: J. E. Halver, & R. W. Hardy (Orgs.), Fish Nutrition (3a ed., p. 181-257). San Diego, CA: Elsevier Academic Press.

Siccardi, A. J., Garris, H. W., Jones, W. T., Moseley, D. B., D'Abramo, L. R., & Watts, S. A. (2009). Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish, 6(3), 275-280. doi: 10.1089/zeb.2008.0553

Sohilait, H. J. (2015). Chemical composition of the essential oils in Eugenia caryophylata, Thunb from Amboina Island. Science Journal of Chemistry, 3(6), 95-99. doi: 10.11648/j.sjc.20150306.13

Sotoudeh, E., Kenari, A. A., Khodabandeh, S., & Khajeh, K. (2015). Combination effects of dietary EPA and DHA plus alpha‐tocopherol: effects on performance and physiological status of Caspian brown trout (Salmo trutta caspius) fry. AquacultureNutrition, 22(5), 1101-1115. doi: 10.1111/anu.12361

Souza, S. M. G., Anido, R. J. V., &Tognon, F. C. (2007). Ácidos graxos Ômega-3 e Ômega-6 na nutrição de peixes – fontes e relações. Revista de Ciências Agroveterinárias, 6(1), 63-71.

Statistical Analysis Systems [SAS]. (2011). SAS/STAT User’s guide, Version 9.3. Cary, NC: SAS Institute Inc.

Teitelbaum, J. E., & Walker, W. A. (2001). Review: the role of omega 3 fatty acids in intestinal inflammation. The Journal of Nutritional Biochemistry, 12(1), 21-32. doi: 10.1016/S0955-2863(00)00141-8

Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43(1), 587-595. doi: 10.1016/j.indcrop.2012.07.069

Ulloa, P. E., Medrano, J. F., & Feijoo, C. G. (2014). Zebrafish as animal model for aquaculture nutrition research. Frontiers in Genetics, 5(1), 313-318. doi: 10.3389/fgene.2014.00313

Westerfield, M. (2007). The zebrafish book: a guide for the laboratory use of zebrafish (Daniorerio) (5th ed.). Eugene, OR: University of Oregon Press.

Publicado
2020-08-18
Como Citar
Silva, T. C. da, Silva, M., Carbonera, F., Visentainer, J. V., Utsunomiya, K. S., Gasparino, E., & Ribeiro, R. (2020). Flaxseed oil and clove leaf essential oil in Zebrafish diet (Danio rerio). Acta Scientiarum. Animal Sciences, 43(1), e48126. https://doi.org/10.4025/actascianimsci.v43i1.48126
Seção
Nutrição de Não-Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus