Investigation of different levels of cholecalciferol and its metabolite in calcium and phosphorus deficient diets on growth performance, tibia bone ash and development of tibial dyschondroplasia in broilers

  • Nasir Landy Islamic Azad University
  • Farshid Kheiri Islamic Azad University
  • Mostafa Faghani Islamic Azad University
  • Ramin Bahadoran Islamic Azad University
Palavras-chave: bone ash; chick; phosphorus deficiency; 1-α(OH)D3; vitamin D3.

Resumo

This experiment was conducted to examine the effects of 1-α(OH)D3 alone or in combination with different levels of cholecalciferol on performance, and tibia parameters of one-d–old male broilers fed a tibial dyschondroplasia (TD)-inducing diet. A total of three hundred male broilers were randomly allocated to 5 treatment groups with 4 replicates. The dietary treatments consisted of TD inducing diet, TD inducing diet supplemented with 5 μg per kg of 1-α(OH)D3; TD inducing diet supplemented with 5 μg per kg of 1-α(OH)D3 and 1,500; 3,000 or 5,000 IU cholecalciferol kg-1 of diet. At 42 d of age, broiler chickens fed diets containing 1-α(OH)D3 and 1,500 IU cholecalciferol kg-1 of diet had higher body weight (p < 0.05). In the complete experimental period the best FCR and the highest daily weight gain were obtained in broilers supplemented with 1-α(OH)D3 and 1,500 IU cholecalciferol kg-1 of diet. Broilers supplemented with 1-α(OH)D3 and 1,500 IU cholecalciferol kg-1 of diet had significantly lower incidence and severity of TD in comparison with other groups. In conclusion, the results indicated that the supplementation of 1-α(OH)D3 in combination of 1,500 IU cholecalciferol kg-1 of diet could maximize tibia bone ash, performance and prevent TD in broilers fed TD inducing diet.

Downloads

Não há dados estatísticos.

Referências

Association Official Analytical Chemist [AOAC]. (1990). Official Methods of Analysis (15th ed.). Washington, DC: AOAC International.

Association Official Analytical Chemist [AOAC]. (1995). Official Methods of Analysis (16th ed.). Washington, DC: AOAC International.

Atencio, A., Pesti, G., & Edwards Jr., H. M. (2005). Twenty-five hydroxycholecalciferol as a cholecalciferol substitute in broiler breeder hen diets and its effect on the performance and general health of the progeny. Poultry Science, 84(8), 1277-1285. doi: 10.1093/ps/84.8.1277

Aviagen. (2014). Ross Broiler Management Manual. Midlothian, UK: Aviagen Ltd.

Biehl, R. R., Emmert, J. L., & Baker, D.H. (1997). Iron bioavailability in soybean meal as affected by supplemental phytase and 1a-hydroxycholecalciferol. Poultry Science, 76(10), 1424-1427. doi: 10.1093/ps/76.10.1424

Drewe, J., Dietsch, P., & Keck, E. (1988). Effect of vitamin D status on the activity of carbonic anhydrase in chicken epiphysis and kidney. Calcified Tissue International, 43(1), 26-32. doi: 10.1007/BF02555164

Driver, J. P., Pesti, G. M., Bakalli, R. I., & Edwards, H. M., Jr. (2005). Phytase and 1alpha-hydroxycholecalciferol supplementation of broiler chickens during the starting and growing/finishing phases. Poultry Science, 84(10), 1616-1628. doi: 10.1093/ps/84.10.1616

Edwards Jr., H. M. (1989). The effect of dietary cholecalciferol, 25-hydroxycholecalciferol and 1,25-dihydroxycholecalciferol on the development of tibial dyschondroplasia in broiler chickens in the absence and presence of disulfiram. Journal of Nutrition, 119(4), 647-652. doi: 10.1093/jn/119.4.647

Edwards Jr., H. M. (1990). Efficacy of several vitamin D compounds in the prevention of tibialdyschondroplasia in broiler chickens. Journal of Nutrition, 120(9), 1054-1061. doi: 10.1093/jn/120.9.1054

Edwards Jr., H. M. (2002). Studies on the efficacy of cholecalciferol and derivatives for stimulating phytate utilization in broilers. Poultry Science, 81(7), 1026-1031. doi: 10.1093/ps/81.7.1026

Edwards Jr., H. M., & Veltmann Jr., J. R. (1983).The role of calcium and phosphorus in the etiology of tibialdyschondroplasia in young chicks. The Journal of nutrition, 113(8), 1568-1575. doi: 10.1093/jn/113.8.1568

Edwards Jr., H. M., Shirley, R. B., Escoe, W. B., & Pesti, G. M. (2002). Quantitative evaluation of 1-alpha-hydroxycholecalciferol as a cholecalciferol substitute for broilers. Poultry Science, 81(5), 664-669. doi: 10.1093/ps/81.5.664

Elliot, M. A., & Edwards Jr., H. M. (1997). Effect of 1, 25-dihydroxycholecalciferol, cholecalciferol and fluorescent lights on the development of tibial dyschondroplasia and rickets in broiler chickens. Poultry Science, 76(4), 570-80. doi: 10.1093/ps/76.4.570

Farquharson, C., & Jefferies, D. (2000). Chondrocytes and longitudinal bone growth: the development of tibial dyschondroplasia. Poultry Science, 79(7), 994-1004. doi: 10.1093/ps/79.7.994

Garcia, A. F., Murakami, A. E., Duarte, C.R., Rojas, I. C. O., Picoli, K. P., & Puzotti, M. M. (2013). Use of vitamin D3 and its metabolites in broiler chicken feed on performance, bone parameters and meat quality. Asian-Australas Journal of Animal Science, 26(3), 408-415. doi: 10.5713/ajas.2012.12455

Ghasemi, G. H., Toghyani, M., & Landy, N. (2018). The effects of dietary 1α-hydroxycholecalciferol in calcium and phosphorous-deficient diets on growth performance, parameters of tibia and immune responses of broiler chickens. Animal Nutrition, 5(2), 134-139. doi: 10.1016/j.aninu.2018.04.011

Han, J. C., Liu, Y., Yao, J., Wang, J., Qu, H., Yan, Y., & Dong, X. (2012). Dietary calcium levels reduce the efficacy of one alpha-hydroxycholecalciferol in phosphorus-deficient diets of broilers. The Journal of Poultry Science, 49(1), 34-38. doi: 10.2141/jpsa.011069

Han, J. C., Yang, X. D., Zhang, L. M., Li, W. L., Zhang, T., Zhang, Z. Y., & Yao, J. H. (2009). Effects of 1α-hydroxycholecalciferol and phytase on growth performance, tibia parameter and meat quality of 1-to 21-d-old broilers. Asian-Australasian Journal of Animal Sciences, 22(6), 857-864. doi: 10.5713/ajas.2009.80623

Kheiri, F., Poshtvar, M., Jalali Haji Abadi, S. M. A., & Landy, N. (2019). Influence of dietary 1αlpha-hydroxycholecalciferol, individually or in combination with microbial phytase in calcium and phosphorus deficient diets on growth performance and tibia parameter of Japanese quails (Coturnix japonica). Acta Scienctiarum. Animal Sciences, 41, e42540. doi: 10.4025/actascianimsci.v41i1.42540

Landy, N., & Toghyani, M. (2014). Evaluation the effects of dietary cholecalciferol substitution with 1alpha-hydroxycholecalciferol on performance and tibia parameters in broiler chickens. International Journal of Poultry Science, 13(9), 515-517. doi: 10.3923/ijps.2014.515.517

Landy, N., & Toghyani, M. (2018). Evaluation of one-alpha-hydroxycholecalciferol (1α-ohd3) alone or in combination with cholecalciferol in calcium and phosphorus deficiency diets on development of tibial dyschondroplasia (TD) in broiler chickens. Animal Nutrition, 4(1), 109-112. doi: 10.1016/j.aninu.2017.11.002

Landy, N., Toghyani, M., Bahadoran, R., & Eghbalsaied, S. (2015). The effects of 1αlpha-hydroxycholecalciferol supplementation on performance and tibia parameter of broiler chickens. Research Opinions in Animal and Veterinary Sciences, 5(8), 342-347. Recovered from https://www.cabdirect.org/cabdirect/abstract/20153359455

Ledwaba, M. F., & Roberson, K. D. (2003). Effectiveness of twenty-five-hydroxycholecalciferol in the prevention of tibial dyschondroplasia in Ross cockerels depends on dietary calcium level. Poultry Science, 82(11), 1769-1777. doi: 10.1093/ps/82.11.1769

Nääs, I. A., Baracho, M. S., Bueno, L. G. F., Moura, D. J., Vercelino, R. A., & Salgado, D. D. (2012). Use of vitamin D to reduce lameness in broilers reared in harsh environments. Brazilian Journal of Poultry Science, 14(3), 159-232. doi: 10.1590/S1516-635X2012000300002

Reddy G. S., & Tserng, K. Y. (1989). Calcitroic acid, end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry, 28(4), 1763-1769. doi: 10.1021/bi00430a051

Rennie, J. S., Whitehead, C. C., & Thorp, B. H. (1993). The effect of dietary 1,25-dihydroxycholecalciferol in preventing tibial dyschondroplasia in broilers fed on diets imbalanced in calcium and phosphorus. British Journal of Nutrition, 69(3), 809-816. doi: 10.1079/BJN19930081

Roberson, K. D., & Edwards Jr., H. M. (1996). Effect of dietary 1, 25-dihydroxycholecalciferol level on broiler performance. Poultry Science, 75(1), 90-94. doi: 10.3382/ps.0750090

Snow, J. L., Baker, D. H., & Parsons, C. M. (2004). Phytase, citric acid, and 1α-hydroxycholecalciferol improve phytate phosphorus utilization in chicks fed a corn-soybean meal diet. Poultry Science, 83(7), 1187-1192. doi: 10.1093/ps/83.7.1187

Statistical Analysis Systems [SAS]. (2012). User’s guide. Cary, NC: SAS Institude Inc.

Whitehead, C. C., McCormack, H. A., McTeir, L., & Fleming, R. H. (2004). High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and vitamin A. British Poultry Science, 45(3), 425-436. doi: 10.1080/00071660410001730941

Williams, B., Waddington, D., Solomon, S., & Farquharson, C. (2000). Dietary effects on bone quality and turn over, and Ca and P metabolism in chickens. Research in Veterinary Science, 69(1), 81-87. doi: 10.1053/rvsc.2000.0392

Publicado
2020-11-06
Como Citar
Landy, N., Kheiri, F., Faghani, M., & Bahadoran, R. (2020). Investigation of different levels of cholecalciferol and its metabolite in calcium and phosphorus deficient diets on growth performance, tibia bone ash and development of tibial dyschondroplasia in broilers. Acta Scientiarum. Animal Sciences, 43(1), e48816. https://doi.org/10.4025/actascianimsci.v43i1.48816
Seção
Nutrição de Não-Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus