Occurrence of visible losses and relationship with corn silage management in dairy farms in the State of Paraná

  • Igor Quirrenbach de Carvalho Universidade Estadual de Maringá
  • Clóves Cabreira Jobim Universidade Estadual de Maringá
  • Milene Puntel Osmari Universidade Federal de Santa Catarina
  • João Luiz Pratti Daniel Universidade Estadual de Maringá
Palavras-chave: aerobic deterioration; effluent; forage harvester; sealing; silo type.

Resumo

The aim of this study was to relate the occurrence of visible losses in silage (effluent, spoiled top-layer and during feedout) with silage-making practices, physical and chemical characteristics of silage, and milk composition in Brazilian dairy herds. One-hundred and eight silos from 95 farms, in the State of Parana, were visited for data collection. Data were analyzed by Fisher's Exact and Pearson Correlation Test. Effluent loss was higher in silages with the lowest dry matter content. Using unwalled clamp (drive-over piles) silos, neglecting a protection over the plastic film, and unloading silage with a bucket increased the occurrence of top spoilage. Feedout losses were higher in farms where: the crop was harvested with self-propelled machines; the particle size was larger, and the silage density was lower. There was no relationship between visible losses and silage composition or milk composition, except for milk fat content that, unexpectedly, there was a positive correlation with spoiled silage in the top-layer. Silage losses are reduced by adopting good practices during silage production and feedout.

Downloads

Não há dados estatísticos.

Referências

Amaral, R. C., Santos, M. C., Daniel, J. L. P., Sá Neto, A., Bispo, A. W., Cabezas-Garcia, E. H., & Nussio, L. G. (2014). The influence of covering methods on the nutritive value of corn silage for lactating dairy cows. Revista Brasileira deZootecnia, 43(9), 471-478. doi: 10.1590/S1516-35982014000900003

Association Official Analytical Chemist [AOAC]. (2005). Official Methods of Analysis (18th ed.). Gaitherburg, MD: AOAC International.

Bernardes, T. F., & Do Rêgo, A. C. (2014). Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science, 97(3),1852-1861. doi:10.3168/jds.2013-7181

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck, R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5), 3952-3979. doi: 10.3168/jds.2017-13837

D’Amours, L., & Savoie, P. (2005). Density profile of corn silage in bunker silos. Canadian Biosystems Engineering,47,2.21-2.28. doi: 10.13031/2013.17064

Faria, D. J. G., Garcia, R., Tonucci, R. G., Tavares, V. B., Pereira, O. G., & Fonseca, D. M. (2010). Produção e composição do efluente da silagem de capim-elefante com casca de café. Revista Brasileira de Zootecnia, 39(3), 471-478. doi: 10.1590/S1516-35982010000300004

Gallo, A., Bertuzzi, T., Giuberti, G., Moschini, M., Bruschi, S., Cerioli, C., & Masoero, F. (2016). New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. Journal of the Science of Food Agriculture, 96(2),437–448. doi: 10.1002/jsfa.7109

Goeser, J. P., Heuer, C. R., & Crump, P. M. (2015). Forage fermentation product measures are related to dry matter loss through meta-analysis. The Professional Animal Scientist, 31(2),137–145. doi: 10.15232/pas.2014-01356

Grant, R. J., Colenbrander, V. F., & Mertens, D. R. (1990). Milk fat depression in dairy cows: role of silage particle size. Journal of Dairy Science, 73(7), 1834-1842. doi: 10.3168/jds. S0022-0302(90)78863-7

Holly, M. A., Larson, R. A., Cooley, E. T., & Wunderlin, A. M. (2018). Silage storage runoff characterization: annual nutrient loading rate and first flush analysis of bunker silos. Agriculture, Ecosystems and Environment, 264(1), 85-93. doi: 10.1016/j.agee.2018.05.015

Jobim, C.C., Nussio, L.G., Reis, R.A., & Schmidt, P. (2007). Avanços metodológicos na avaliação da qualidade da forragem conservada. Revista Brasileira de Zootecnia, 36(Supl. Esp.), 101-119. doi: 10.1590/S1516-35982007001000013Krüger, A. M.,

Lammers, B. P., Buckmaster, D. R., & Heinrichs, A. J. (1996). A simple method for the analysis of particle size of forage and total mixed rations. Journal of Dairy Science, 79(5),922-928. doi: 10.3168/jds.S0022-0302(96)76442-1

Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International, 85(6),1217-1240.

Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In C. A. Black (Ed.), Methods of soil analysis, part 3: Chemical methods (p. 961-1010). Madison, WI: Soil Science Society of America.

Oliveira, L. B., Pires, A. J. V., Carvalho, G. G. P., Ribeiro, L. S. O., Almeida, V. V., & Peixoto, C. A. M. (2010). Perdas e valor nutritivo de silagens de milho, sorgo-sudão, sorgo forrageiro e girassol. Revista Brasileira de Zootecnia, 39(1), 61-67. doi: 10.1590/S1516-35982010000100008

Pereira, J. R. A., & Rossi Junior, P. (1995). Manual prático de avaliação nutricional de alimentos. Piracicaba, SP: Fealq.

Scott, P. M. (1997). Natural toxins. In P. Cunnif (Ed.), Official methods of analysis (16th ed). Gaithersburg, MD: AOAC International.

Senger, C. C. D., Mühlbach, P. R. F., Sànchez, L. M. B., Netto, D. P., & Lima, L. D. (2005). Composição química e digestibilidade ‘in vitro’ de silagens de milho com distintos teores de umidade e níveis de compactação. Ciência Rural, 35(6), 1393-1399. doi: 10.1590/S0103-84782005000600026

Sistema de Tecnologia e Monitoramento Ambiental do Paraná [SIMEPAR]. (2019). Boletim climatológico inverno/2019. Recovered from http://www.simepar.br/prognozweb/simepar/timeline/boletim_climatologico.

Statistical Analysis Software [SAS]. (2011). SAS/STAT User guide, Version 9.3. Cary, NC: SAS Institute Inc.

Tilley, J. A., & Terry, R. A. (1963). A two-stage technique of the in vitro digestion of forage crops. Grass and Forage Science, 18(2),104-111. doi: 10.1111/j.1365-2494.1963.tb00335.x

Zar, J. H. (2010). Biostatistical Analysis (5th ed). Upper Saddle River, NJ: Pearson Prentice-Hall.

Zebeli, Q., Aschenbach, J. R., Tafaj, M., Boquhn, J., Ametaj, B. N., & Drochner, W. (2012). Role of physically effective fiber and estimation of dietary fiber adequacy in high-producing dairy cattle. Journal of Dairy Science, 95(3), 1041-1056. doi: 10.3168/jds.2011-4421

Zebeli, Q., Tafaj, M., Steingass, H., Metzler, B., & Drochner, W. (2006). Effects of physically effective fiber on digestive processes and milk fat content in early lactating dairy cows fed total mixed rations. Journal of Dairy Science, 89(2), 651-668. doi:10.3168/jds.S0022-0302(06)72129-4

Publicado
2020-08-19
Como Citar
Carvalho, I. Q. de, Jobim, C. C., Osmari, M. P., & Daniel, J. L. P. (2020). Occurrence of visible losses and relationship with corn silage management in dairy farms in the State of Paraná . Acta Scientiarum. Animal Sciences, 43(1), e49933. https://doi.org/10.4025/actascianimsci.v43i1.49933
Seção
Forragicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus