Chemical composition of forage watermelon fruit at different maturity stage or storage length

Palavras-chave: Citrullus lanatus var. citroides; fruit quality; forage plant; nutritional value.

Resumo

This study aimed to assess the chemical responses of forage watermelon fruit at different maturity stages or storage lengths, performing two experimental tests. In the first test, four maturity stages were assessed: 30, 45, 60, and 75 days after anthesis, with four replicates. In the second test, fruits were maintained under three storage lengths: T1D (harvest day), T3M (3 months after harvest), and T6M (6 months after harvest), with eight replicates. Experimental design was completely randomized in both experimental tests. Fruit maturity stage did not affect crude protein, total carbohydrate, neutral detergent fiber, in vitro dry matter digestibility (IVDMD), pulp firmness, soluble solids content and total pectin content, but increased acid detergent fiber content from 45 days after anthesis. Storage length up to six months after harvest increased ash, crude protein and IVDMD, and reduced the content of soluble solids. Forage watermelon fruit can be harvested from 30 to 75 days after anthesis equivalent to 75 - 120 days after planting, and they can be stored under tree shade up to 6 months after harvest.

Downloads

Não há dados estatísticos.

Referências

Almeida, M. L. B., Silva, G. G., Rocha, R. H. C., Morais, P. L. D., & Sarmento, J. D. A. (2010). Physico-chemical characterization ‘quetzali’ watermelon during development. Revista Caatinga, 23(4), 28-31.

Association of Official Analytical Chemistry [AOAC]. (1990). Official methods of Analysis (15th ed.). Arlington, VA: AOAC International.

Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronics acids. Analytical Biochemistry, 54(2), 484-493. DOI: https://doi.org/10.1016/0003-2697(73)90377-1

Empresa Brasileira de Pesquisa Agropecuária [Embrapa]. (2013). Sistema brasileiro de classificação de solos. (3. ed.). Brasília, DF: Embrapa.

Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Simões Saliba, E. O., ... Gomes, J. A. (2012). Métodos para análise de alimentos. Viçosa, MG: Instituto Nacional de Ciência e Tecnologia de Ciência Animal.

Holden, L. A. (1999). Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of Dairy Science, 82(8), 1791-1794. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75409-3

Kavut, Y. T., Geren, H., & Simić, A. (2014). Effect of different plant densities on the fruit yield and some related parameters and storage losses of fodder watermelon (Citrillus lanatus var. citroides) fruits. Turkish Journal of Field Crops, 19(2), 226-230. DOI: https://doi.org/10.175557/tjfc.51368

Mashilo, J., Shimelisa, H., Odindo, A. O., & Amelework, B. (2017). Genetic diversity and differentiation in citron watermelon [Citrullus lanatus var. citroides] landraces assessed by simple sequence repeat markers. Scientia Horticulturae, 214, 99-106. DOI: https://doi.org/10.1016/j.scienta.2016.11.015

McCready, R. M., & McComb, E. A. (1952). Extraction and determination of total pectic materials in fruits. Analytical Chemistry, 24(12), 1986-1988. DOI: https://doi.org/10.1021/ac60072a033

Mo, Y., Yang, R., Liu, L., Gu, X., Yang, X., Wang, Y., Zhang, X., & Li, H. (2016). Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regulation, 79, 229-241. DOI: https://doi.org/10.1007/s10725-015-0128-9

Petkowicz, C. L. O., Vriesmann, L. C., & Williams, P. A. (2017). Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocolloids, 65, 57-67. DOI: https://doi.org/10.1016/j.foodhyd.2016.10.040

Ramos, A. R. P., Dias, R. C. S., & Aragão, C. A. (2009). Qualidade de frutos de melancia sob diferentes densidades de plantio. Horticultura Brasileira, 27, 2182-2188. DOI: https://doi.org/10.1590/S0102-05362009000400026

Ribeiro, I. A., Voltolini, T. V., Simões, W. L., Ferreira, M. A. J. D. F., Sobreira, A. M., & Gois, G. C. (2021). Responses of forage watermelon genotypes submitted to different water supply. Biological Rhythm Research, 52(2), 293-306. DOI: https://doi.org/10.1080/09291016.2019.1594122

Santos, R. M., Melo, N. F., & Fonseca, M. A. J. (2017). Combining ability of forage watermelon (Citrullus lanatus var. citroides) Germplasm. Revista Caatinga, 30(3), 768-775. DOI: https://doi.org/10.1590/1983- 21252017v30n325rc

Statistical Analysis System [SAS]. (2009). User’s guide: statistics. (Version 9.0). Cary, NC: SAS Inst Inc.

Silva, R. L. N. V., Araújo, G. G. L., Socorro, E. P., Oliveira, R. L., Garcez Neto, A. F., & Bagaldo, A. R. (2009). Levels of forage watermelon meal in diets for sheep. Revista Brasileira de Zootecnia, 38(6), 1142-1148. DOI: https://doi.org/10.1590/S1516-35982009000600023

Sniffen, C. J., O’Connor, J. D., Van Soest, P. J. Fox, D. G., & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II, Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. DOI: https://doi.org/10.2527/1992.70113562x

Souto, J. C. R., Araújo, G. G. L., Silva, D. S., Porto, E. R., Turco, S. H. N., & Medeiros, A. N. (2005). Performance of sheep fed diets with increasing levels of herb salt hay (Atriplex nummularia Lindl.). Revista Ciência Agronômica, 36(3), 376-381.

Tilley, J. M. A., & Terry, R. A. A. (1963). two-stage technique for the in vitro digestion of forage crops. Journal of the British Grassland Society, 18(2), 104-111. DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Trape, A. R., & Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2), 447-453.

Van Soest, P. J., & Wine, R. H. (1967). Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. Journal of AOAC International, 50(1), 50-55, 1967. DOI: https://doi.org/10.1093/jaoac/50.1.50

Publicado
2021-12-22
Como Citar
Azeredo, A. B. de, Silva, A. P. R. da, Matias, A. G. da S., Silva, V. M. da, Correia, A. A. V., & Voltolini, T. V. (2021). Chemical composition of forage watermelon fruit at different maturity stage or storage length . Acta Scientiarum. Animal Sciences, 44(1), e53624. https://doi.org/10.4025/actascianimsci.v44i1.53624
Seção
Forragicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus