Evaluation of in vitro energy distribution and methanogenic potential of two forages with the addition of condensed tannins

  • Juan Manuel Cantet Universidad de Buenos Aires / Consejo Nacional de Investigaciones Científicas y Técnicas https://orcid.org/0000-0001-5167-5073
  • Darío Colombatto Universidad de Buenos Aires
  • Rocío Soledad Martinez Universidad de Buenos Aires
  • Rolando Barahona Rosales Universidad Nacional de Colombia https://orcid.org/0000-0002-4246-7835
  • Isabel Cristina Molina Botero Universidad Nacional de Colombia
  • Gustavo Jaurena Universidad de Buenos Aires
Palavras-chave: secondary compounds; methane production; in vitro gas production; ryegrass; Megathyrsus maximus.

Resumo

The objective of this work was to analyze the effect of the addition of condensed tannins (CT) in the efficiency of digestion, methanogenic potential and energy distribution between the fermentation products of two forages. An assay was carried out using the in vitro gas production technique in which extracts of Quebracho (Schinopsis balansae) and Lotus corniculatus were evaluated with fermentation patterns of derived products from Ryegrass (RG, Lolium perenne) and a tropical forage, Megathyrsus maximus (MM). Tannins were added to the substrate at a concentration of 30 mg g-1. MM presented higher and delayed gas production (GP), and in vitro dry matter, organic matter and fiber digestibilities (ivDMD, ivOMD and NDFD, respectively) were relatively high but lower than RG. In addition, MM presented higher CH4 production (CH4p) than RG in 24 and 48h. Even though CT of Quebracho induced a decrease in the NDFD, contrary to what was expected, CH4p was greater, although this effect could not be attributed to the presence of CT. The stoichiometric evaluation indicated that while the highest CH4p in Quebracho treatments were associated with acetogenic profiles, CH4p with Lotus did not show any relationship with the volatile fatty acids (VFA) profile, but it did show a relationship with the highest total VFA production and the highest GP.

Downloads

Não há dados estatísticos.

Referências

Abd El Taw, A. M., & Khattab, M. S. A. (2018). Utilization of polyethylene glycol and tannase enzyme to reduce the negative effect of tannins on digestibility, milk production and animal performance. Asian Journal of Animal and Veterinary Advances, 13(3), 201-209. DOI: https://doi.org/10.3923/ajava.2018.201.209.

Archimède, H., Eugène, M., Marie Magdeleine, C., Boval, M., Martin, C., Morgavi, D. P., … Doreau, M. (2011). Comparison of methane production between C3 and C4 grasses and legumes. Animal Feed Science and Technology, 166-167, 59-64. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.003

Association of Official Analytical Chemists [AOAC]. (1990). Official methods of analysis (16th ed.). Arlington, VA: AOAC.

Baba, A. S. H., Castro, F. B., & Orskov, E. R. (2002). Partitioning of energy and degradability of browse plants in vitro and the implications of blocking the effects of tannin by the addition of polyethylene glycol. Animal Feed Science and Technology, 95(1-2), 93-104. DOI: https://doi.org/10.1016/S0377-8401(01)00283-8

Barahona Rosales, R., Lascano, C. E., Narvaez, N., Owen, E., Morris, P., & Theodorou, M. K. (2003). In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. Journal of Science of Food and Agriculture, 83(12), 1256-1266. DOI: https://doi.org/10.1002/jsfa.1534

Blümmel, M., Aiple, K. P., Steingas, H., & Becker, K. (1999). A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. Journal of Animal Physiology and Animal Nutrition, 81(3), 157-167. DOI: https://doi.org/10.1046/j.1439-0396.1999.813205.x

Blümmel, M., Steingass, H., & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921. DOI: https://doi: 10.1079/bjn19970089

Bueno, I. C. S., Brandi, R. A., Franzolin, R., Benetel, G., Fagundes, G. M., Abdalla, A. L., … Muir, J. P. (2015). In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology, 205(1), 1-9. DOI: https://doi.org/10.1016/j.anifeedsci.2015.03.008

Cantet, J. M., Neumann Reiter, A. M., Colombatto, D., Wawrzkiewicz, M., & Jaurena, G. (2018). Effect of condensed tannins in the methanogenic potential and in vitro digestion efficiency of ryegrass. Revista Argentina de Producción Animal, 38(2), 37-47.

Carreño, D., Hervás, G., Toral, P. G., Belenguer, A., & Frutos, P. (2015). Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Animal Feed Science and Technology, 202(1), 42-51. DOI: https://doi.org/10.1016/j.anifeedsci.2015.02.003

Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89. DOI: https://doi.org/10.1016/j.anifeedsci.2007.09.010

Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures and some applications) (Agriculture Handbook, 379). Washington, D.C.: Agricultural Research Service, U.S. Dept. of Agriculture.

Guyader, J., Ungerfeld, E. M., & Beauchemin, K. A. (2017). Redirection of metabolic hydrogen by inhibiting methanogenesis in the rumen simulation technique (RUSITEC). Frontiers in Microbiology, 8(1), 1-16. DOI: https://doi.org/10.3389/fmicb.2017.00393

Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., … Oosting, S. (2013). Mitigation of greenhouse gas emissions in livestock production. A review of technical options for non-CO2 emissions. Rome, IT: FAO Animal Production and Health.

Huang X. D., Liang J. B., Tan H. Y., Yahya R., Khamseekhiew B., & Ho Y. W. (2010). Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Animal Feed Science and Technology, 159(3-4), 81-87. DOI: https://doi.org/10.1016/j.anifeedsci.2010.05.008

Janssen, P. H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160(1-2), 1-22. DOI: https://doi.org/10.1016/j.anifeedsci.2010.07.002

Jayanegara, A., Makkar, H. P. S., & Becker, K. (2015). Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan, 38(1), 57-63. DOI: https://doi.org/10.5398/medpet.2015.38.1.57

Jones, G. A., McAllister, T. A., Muir, A. D., & Cheng, K. J. (1994). Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Applied and Environmental Microbiology, 60(4), 1374-1378. DOI: https://doi.org/10.1128/aem.60.4.1374-1378.1994

Knapp, J. R., Laur, G. L., Vadas, P. A, Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97(6), 3231-3261. DOI: https://doi.org/10.3168/jds.2013-7234

Krishnamoorthy, U., & Robinson, P. H. (2010). Prediction of rumen microbial N supply in bovines from dietary values of partitioning factor (PF), in vitro rate of gas production (k), neutral detergent fibre and crude protein: a brief systematic review of studies completed in Bengaluru (India). Animal Feed Science and Technology, 160(3-4), 167-171. DOI: https://doi.org/10.1016/j.anifeedsci.2010.07.007

Kumar, S., Choudhury, P. K., Carro, M. D., Griffith, G. W., Dagar, S. S., Puniya, M., … Puniya, A. K. (2014). New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Biotechnology, 98(1), 31-44. DOI: https://doi.org/10.1007/s00253-013-5365-0

Lopez, S., & Newbold, C. J. (2007). Analysis of methane. In H. P. S. Makkar, & P. E. Vercoe (Eds.), Measuring methane production from ruminants (p. 1-14). Dordrecht, NL: Springer.

Min, B. R., & Solaiman, S. (2018). Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: a review. Journal of Animal Physiology and Animal Nutrition, 112(5), 1-13. DOI: https://doi.org/10.1111/jpn.12938

Mohammadabadi, T., & Jolazadeh, A. (2017). Replacement of alfalfa hay (Medicago sativa L.) with subabul (Leucaena leucocephala) leaf meal in diets of Najdi goats: effect on digestion activity of rumen microorganisms. Tropical Animal Health and Production, 49(6), 1309-1316. DOI: https://doi.org/10.1007/s11250-017-1330-8

Morgavi, D. P., Forano, E., Martin, C., & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7), 1024-1036. DOI: https://doi.org/10.1017/S1751731110000546

Nguyen, T. T. G., Wanapat, M., Phesatcha, K., & Kang, S. (2017) Effect of inclusion of different levels of Leucaena silage on rumen microbial population and microbial protein synthesis in dairy steers fed on rice straw. Asian-Australasian Journal of Animal Science 30(2),181-186. DOI: https://doi.org/10.5713/ajas.15.0948

Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503. DOI: https://doi.org/10.1017/S0021859600063048

Patra, A. K., & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71(11-12), 1198-1222.

Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37. DOI: https://doi.org/10.1002/jsfa.4152

Piñeiro-Vázquez, A. T., Jiménez-Ferrer, G., Alayon-Gamboa, J. A., Chay-Canul, A. J., Ayala-Burgos, A. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2018). Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. Tropical Animal Health and Production, 50(1), 29-36. DOI: https://doi.org/10.1007/s11250-017-1396-3

Puchala, R., Animut, G., Patra, A. K., Detweiler, G. D., Wells, J. E., Varel, V. H., … Goetsch, A. L. (2012). Methane emissions by goats consuming Sericea lespedeza at different feeding frequencies. Animal Feed Science and Technology, 175(1-2), 76-84. DOI: https://doi.org/10.1016/j.anifeedsci.2012.03.015

Supapong, C., Cherdthong, A., Seankamsorn, A., Khonkhaeng, B., Wanapat, M., Uriyapongson, S., … Polyorach, S. (2017). In vitro fermentation, digestibility and methane production as influenced by Delonix regia seed meal containing tannins and saponins. Journal of Animal and Feed Sciences, 26(2), 123-130. DOI: https://doi.org/10.22358/jafs/73890/2017

Tavendale, M. H., Meagher, L. P., Pacheco, D., Walker, N., Attwood, G. T., & Sivakumaran, S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology, 123–124, 403–419. https://doi.org/10.1016/j.anifeedsci.2005.04.037

Terril, T. H., Rowan, A. M., Douglas, G. B., & Barry, T. N. (1992). Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. Journal of the Science of Food and Agriculture, 58(3), 321-329. DOI: https://doi.org/10.1002/jsfa.2740580306

Theodorou, M. K., Williams, B. A., Dhanoa, M. S., Mcallan, A. B., & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48(3-4), 185-197. DOI: https://doi.org/10.1016/0377-8401(94)90171-6

Wolin, M. J. (1960). A theoretical rumen fermentation balance. Journal of Dairy Science, 43(10), 1452-1459. DOI: https://doi.org/10.3168/jds.S0022-0302(60)90348-9

Publicado
2022-03-07
Como Citar
Cantet, J. M., Colombatto, D., Martinez, R. S., Rosales , R. B., Botero, I. C. M., & Jaurena, G. (2022). Evaluation of in vitro energy distribution and methanogenic potential of two forages with the addition of condensed tannins . Acta Scientiarum. Animal Sciences, 44(1), e53828. https://doi.org/10.4025/actascianimsci.v44i1.53828
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus