Essential fatty acids in farmed tambaqui (Colossoma macropomum) from the Brazilian Amazon Area

  • Tatiana Soares dos Santos Universidade Federal da Paraíba https://orcid.org/0000-0002-3401-2005
  • Ernané dos Santos Souza Universidade Estadual de Campinas
  • Neura Bragagnolo Universidade Estadual de Campinas
  • Antonio Rosendo da Costa Universidade Federal da Paraíba
  • José Jordão Filho Universidade Federal da Paraíba
  • Neiva Maria de Almeida Universidade Federal da Paraíba
Palavras-chave: freshwater fish; EPA; DHA; nutritional quality of lipids.

Resumo

The goal of this study was to determine the essential fatty acids of the total lipids of the fillet, head and orbital cavity tissue from farmed tambaqui (Colossoma macropomum) fish from a Brazilian Amazon area. The tambaqui were acquired from different fish farms in the Roraima state, located at Western Brazilian Amazon. The meat, the head and the fatty tissue from orbital cavity were dissected for lipid extraction and analysis of fatty acids by gas chromatography. The fatty acids were quantified in mg g-1 of total lipids using C23:0 as an internal standard. The nutritional quality of the lipids was determined by using the atherogenicity and thrombogenicity indices, and also by the ratio between hypocholesterolemic / hypercholesterolemic fatty acids. The orbital cavity tissue had the higher concentration amount of linoleic and α-linolenic acid, whereas the fillet had higher docosahexaenoic acid (DHA). The eicosapentaenoic acid (EPA) concentration was: 1.28, 0.97, 1.71 mg g-1 of total lipids, in the filet, in head, and in orbital cavity tissue, respectively. All essential fatty acids were detected in the three parts analyzed. The nutritional quality of the total lipids from the head and from the orbital cavity tissue was similar to the fillet.

Downloads

Não há dados estatísticos.

Referências

Almeida, N. M., & Franco, M. R. B. (2006). Determination of essential fatty acids in captured and farmed tambaqui (Colossoma macropomum) from the Brazilian Amazonian area. Journal of the American Oil Chemists' Society, 83(8), 707-711. DOI: https://doi.org/10.1007/s11746-006-5027-9

Almeida, N. M., & Franco, M. R. B. (2007). Fatty acid composition of total lipids, neutral lipids and phospholipids in wild and farmed matrinxã (Brycon cephalus) in the Brazilian Amazon area. Journal of the Science of Food and Agriculture, 87(14), 2596-2603. DOI: https://doi.org/10.1002/jsfa.3014

Amminger, G. P., Schäfer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., … Berger, G. E. (2010). Long-chain ω-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146-154. DOI: https://doi.org/10.1001/archgenpsychiatry.2009.192

Ascherio, A., & Willett, W. C. (1995). New directions in dietary studies of coronary heart disease. The Journal of Nutrition, 125(suppl. 3), 647S-655S. DOI: https://doi.org/10.1093/jn/125.3_Suppl.647S

Associação Brasileira da Piscicultura. (2019). Anuário Peixe BR da Piscicultura 2019. Pinheiros, SP: Anuário da Associação Brasileira da Piscicultura.

Baum, S. J., Kris-Etherton, P. M., Willett, W. C., Lichtenstein, A. H., Rudel, L. L., Maki, K. C., … Block, R. C. (2012). Fatty acids in cardiovascular health and disease: a comprehensive update. Journal of Clinical Lipidology, 6(3), 216-234. DOI: https://doi.org/10.1016/j.jacl.2012.04.077

Calder, P. C. (2008). PUFA, inflammatory processes and rheumatoid arthritis. Proceedings of the Nutrition Society, 67(4), 409-418. DOI: https://doi.org/10.1017/S0029665108008690

Costa, D. D. S. V., & Bragagnolo, N. (2017). Development and validation of a novel microwave assisted extraction method for fish lipids. European Journal of Lipid Science and Technology, 119(3), 1600108. DOI: https://doi.org/10.1002/ejlt.201600108

Djoussé, L., Biggs, M. L., Lemaitre, R. N., King, I. B., Song, X., Ix, J. H., Mukamal, K. J., … Mozaffarian, D. (2011). Plasma omega-3 fatty acids and incident diabetes in older adults. The American Journal of Clinical Nutrition, 94(2), 527-533. DOI: https://doi.org/10.3945/ajcn.111.013334

Drover, J. R., Hoffman, D. R., Castañeda, Y. S., Morale, S. E., Garfield, S., Wheaton, D. H., & Birch, E. E. (2011). Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Human Development, 87(3), 223-230. DOI: https://doi.org/10.1016/j.earlhumdev.2010.12.047

Ferraz, R. B., Kabeya, N., Lopes-Marques, M., Machado, A. M., Ribeiro, R. A., Salaro, A. L., ... Monroig, Ó. (2019). A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 227(1), 90-97. DOI: https://doi.org/10.1016/j.cbpb.2018.09.003

Folch, J., Less, M., & Stanley, S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal Biological Chemistry, 226(1), 497-509.

Food and Agriculture Organization [FAO]. (2010). Fats and fatty acids in human nutrition: report of an expert consultation, 10-14 November 2008 (FAO food and nutrition paper 91). Geneva, CH: FAO.

Food and Agriculture Organization [FAO]. (2020). The State of world fisheries and aquaculture (SOFIA). Rome, IT: FAO yearbook.

Gerster, H. (1998). Can adults adequately convert a-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)?. International Journal for Vitamin and Nutrition Research, 68(3), 159-173.

Joseph, J. D., & Ackman, R. G. (1992). Capillary column gas chromatographic method for analysis of encapsulated fish oils and fishoil ethyl esters: collaborative study. Journal of AOAC International, 75(3), 487-506. DOI: https://doi.org/10.1093/jaoac/75.3.488

Krauss-Etschmann S., Shadid, R., Campoy, C., Hoster, E., Demmelmair, H., Jimenez, M., Gil, A., … Koletzko, B. V. (2007). Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. The American Journal of Clinical Nutrition, 85(5), 1392-1400, 2007. DOI: https://doi.org/10.1093/ajcn/85.5.1392

Liu, J. J., Green, P., Mann, J. J., Rapoport, S. I., & Sublette, M. E. (2015). Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain research, 1597(1), 220-246. DOI: https://doi.org/10.1016/j.brainres.2014.11.059

Mjaavatten, O., Levings, C. D., & Poon, P. (1998). Variation in the fatty acid composition of juvenile chinook and coho salmon from Fraser River estuary determined by multivariate analysis; role of environment and genetic origin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(2), 291-309. DOI: https://doi.org/10.1016/S0305-0491(98)10019-6

Mourente, G., & Tocher, D. R. (1992). Effects of weaning onto a pelleted diet on docosahexaenoic acid (22:6n-3) levels in brain of developing turbot (Scophthalmus maximus L.). Aquaculture, 105(3-4), 363-377. DOI: https://doi.org/10.1016/0044-8486(92)90100-Y

Murthy, P. S., Rai, A. K., & Bhaskar, N. (2014). Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. Journal of Food Science and Technology, 51(9), 1884-1892. DOI: https://doi.org/10.1007/s13197-012-0730-z

Nieminen, P., Westenius, E., Halonen, T., & Mustonen, A. M. (2014). Fatty acid composition in tissues of the farmed Siberian sturgeon (Acipenser baerii). Food chemistry, 159(1), 80-84. DOI: https://doi.org/10.1016/j.foodchem.2014.02.148

Ordóñes, J. Á., Rodriguez, M. I. C., Sanz, M. L. G., Minguillón, G. D. G. F., Perales, L. H., & Cortecero, M. D. S. (2005). Tecnologia de alimentos: alimentos de origem animal. Porto Alegre, RS: Artmed.

Petenuci, M. E., Rocha, I. D. N. A., Sousa, S. C., Schneider, V. V. A., Costa, L. A. M. A., & Visentainer, J. V. (2016). Seasonal variations in lipid content, fatty acid composition and nutritional profiles of five freshwater fish from the Amazon basin. Journal of the American Oil Chemists' Society, 93(10), 1373-1381. DOI: https://doi.org/10.1007/s11746-016-2884-8

Pitombo, R. N. M. (1989). A liofilização como técnica de conservação de material de pesquisa. Ciência e Cultura, 41(5), 427-431.

Santos-Silva, J., Bessa, R. J. B., & Santos-Silva, F. (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science, 77(2-3), 187-194. DOI: https://doi.org/10.1016/S0301-6226(02)00059-3

Satar, E. I., Uysal, E., Ünlü, E., Başhan, M., & Satar, A. (2012). The effects of seasonal variation on the fatty acid composition of total lipid, phospholipid, and triacylglycerol in the dorsal muscle of Capoeta trutta found in the Tigris River (Turkey). Turkish Journal of Biology, 36(1), 113-123. DOI: https://doi.org/10.3906/biy-1008-81

Senso, L., Suárez, M. D., Ruiz-Cara, T., & García-Gallego, M. (2007). On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chemistry, 101(1), 298-307. DOI: https://doi.org/10.1016/j.foodchem.2006.01.036

Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 233(6), 674-688. DOI: https://doi.org/10.3181/0711-MR-311

Spector, A. A., & Kim, H. Y. (2019). Emergence of omega-3 fatty acids in biomedical research. Prostaglandins, Leukotrienes and Essential Fatty Acids, 140(1), 47-50. DOI: https://doi:10.1016/j.plefa.2018.11.017

Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research, 41(5), 717-732. DOI: https://doi.org/10.1111/j.1365-2109.2008.02150.x

Ulbricht, T. L. V., & Southgate, D. A. T. (1991). Coronary heart disease: seven dietary factors. The lancet, 338(8773), 985-992. DOI: https://doi.org/10.1016/0140-6736(91)91846-M

Van der Meij, B. S., Langius, J. A. E., Spreeuwenberg, M. D., Slootmaker, S. M., Paul, M. A., Smit, E. F., & Van Leeuwen, P. A. (2012). Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT. European Journal of Clinical Nutrition, 66(3), 399-404. DOI: https://doi.org/10.1038/ejcn.2011.214

Visentainer, J. V. (2012). Aspectos analíticos da resposta do detector de ionização em chama para ésteres de ácidos graxos em biodiesel e alimentos. Química Nova, 35(2), 274-279. DOI: https://doi.org/10.1590/S0100-40422012000200008

Wall, R., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2010). Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition Reviews, 68(5), 280-289. DOI: https://doi.org/10.1111/j.1753-4887.2010.00287.x

Wani, A. L., Bhat, S., & Ara, A. (2015). Omega-3 fatty acids and the treatment of depression: a review of scientific evidence review. Integrative Medicine Research, 4(3), 132-142. DOI: https://doi.org/10.1016/j.imr.2015.07.003

Publicado
2022-09-13
Como Citar
Santos, T. S. dos, Souza, E. dos S., Bragagnolo, N., Costa, A. R. da, Jordão Filho, J., & Almeida, N. M. de. (2022). Essential fatty acids in farmed tambaqui (Colossoma macropomum) from the Brazilian Amazon Area . Acta Scientiarum. Animal Sciences, 45(1), e57090. https://doi.org/10.4025/actascianimsci.v44i1.57090
Seção
Aquicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus