Effect of adding Spirulina platensis algae to small ruminant rations on productive, reproductive traits and some blood components
Resumo
This experiment conducted using 20 Rahmani ewes at the last third of pregnancy in two equal groups. One group served as control, while the other group received Spirulina platensis (SP) at the rate of 0.5 gm 10 kg-1 live body weight. The objective was to find out the effect of adding Spirulina platensis algae to small ruminant rations on reproductive and productive traits and blood components of sheep. The experiments lasted for 120 days for both dams and their lambs after weaning. The findings proved that adding SP in ewes' diets had no effect on the average of live body weight change. Average milk yield was significantly (p <0.01) higher in the treatment group than the control. Lamb's birth weight and daily body gain of the treated group were significantly (p <0.01) higher than the control. Blood and serum picture profile of ewes were significantly higher when fed SP additive than the control. It could be concluded that the addition of SP to the ration of sheep positively preserved their health, productive and reproductive status as well as their lambs' growth rate. Also the additive improved the economic efficiency of treated animals by about 53.13%.
Downloads
Referências
Abdel-Daim, M. M., Abuzead, S. M. M., & Halawa, S. M. (2013). Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS ONE, 8(9), e72991. DOI: http://dx.doi.org/10.1371/journal.pone.0072991
Abd Eldaim, M.A., Ramadan, S. G. A., Elsabagh, M., & Mahboub, H. D. H. (2018). Impact of Spirulina platensis algae and vitamin A supplementation to late pregnant ewes on their lamb’s survivability and performance. Assiut Veterinary Medical Journal, 64(159), 144-153. DOI: http://dx.doi.org/10.21608/avmj.2018.169034
Abou-Zeid, A., El-Damarawy, S., Mariey, Y., & El-Mansy, M. (2015). Effect of using Spirulina platensis and/or Chlorella vulgaris algae as feed additives on productive performance of broiler chicks. Journal of Animal and Poultry Production, 6(10), 623-634. DOI: https://doi.org/10.21608/jappmu.2015.52940
Ahmad Fazel, A., Kia, H. D., Hosseinkhani, A., Moghaddam, G., Alijani, S., & Olfati, A. (2014). Investigating the effectiveness of nutrition on the sexual and breeding behaviors in Ghezel sheep. International Journal of Advanced Biological and Biomedical Research, 2(3), 715-722.
Akporhuarho, P. O. (2015). Assessments of udder size and milk yield of West African Dwarf (WAD) goats reared under semi intensive management system in Humid Nigeria. Global Journal of Animal Scientific Research, 3(1), 36-40.
Association of Official Analysis Chemists [AOAC]. (2000). International, official methods of analysis. Gaithersburg, MD: Association of Analytical Communities.
Association of Official Analytical Chemists [AOAC]. (2007). Official methods of analysis. Washington, DC: AOAC.
Azab, S., Abdel-Daim, M., & Eldahshan, O. (2013). Phytochemical, cytotoxic, hepatoprotective and antioxidant properties of Delonix regia leaves extract. Medicinal Chemistry Research, 22(1), 4269-4277. DOI: https://doi.org/10.1007/s00044-012-0420-4
Becker, W. (2004). Microalgae in human and animal nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and applied phycology (p. 312). Hoboken, NJ: Wiley-Blackwell.
Becker, E. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210. DOI: https://doi.org/10.1016/j.biotechadv.2006.11.002
Belay, A. (2002). The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management, Review. Journal of the American Nutraceutical Association, 5(1), 27-48.
Bleakley, S., & Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods, 6, 33-66. DOI: https://doi.org/10.3390/foods6050033
Capelli, B., & Cysewski, G. R. (2010). Potential health benefits of Spirulina microalgae. Nutrafoods, 9(1), 19-26. DOI: https://doi.org/10.1007/BF03223332
Carroll, J. A., & Forsberg, N. E. (2007). Influence of stress and nutrition on cattle immunity. Veterinary Clinics of North America: Food Animal Practice, 23(1), 105-149. DOI: http://dx.doi.org/10.1016/j.cvfa.2007.01.003
Call, D. R., Davis, M. A., & Sawant, A. A. (2008). Antimicrobial resistance in beef and dairy cattle production. Animal Health Research Reviews, 9(2), 159-167. DOI: http://dx.doi.org/10.1017/S1466252308001515
Christaki, E., Karatzia, M., Bonos, E., Florou-Paneri, P., & Karatzias, C. (2012). Effect of dietary Spirulina platensis on milk fatty acid profile of dairy cows. Asian Journal of Animal and Veterinary Advances, 7(7), 597-604. DOI: https://doi.org/10.3923/ajava.2012.597.604
Duncan, D. (1955). Multiple ranges and multiple F-test. Biometrics, 11(1), 1-42. DOI: http://dx.doi.org/10.2307/3001478
El-Sabagh, M. R., Abd Eldaim, M. A. Mahboub, D. H., & Abdel-Daim, M. (2014). Effects of Spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. Journal of Agricultural Science, 6(3), 92-98. DOI: https://doi.org/10.5539/jas.v6n3p92
Gershwin, M. E., & Belay, A. (2008). Spirulina in human nutrition and health. Boca Raton, FL: CRC Press.
Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A., & Bandarra, N. M. (2008). Microalgae in novel food products. In K. N. Papadopoulos (Ed.), Food chemistry research developments (p. 1-37). Ney York, NY: Nova Science Publishers.
Hafez, A. A., Khalifa, E. I., Behery, H. R., Mahrous, Y. H., Fayed, A. A., & Hassanien, H. A. M. (2015). Productive and reproductive performance of ewes and growth rate of lambs as affected by non-conventional energy supplement to rations. Egyptian Journal of Sheep & Goat Sciences, 10(2), 81-93.
Henneberg, W., & Stohman, F. (1860-1864). Begründung einer rationellen Ftterung der Wiederkäuer (Vol. 1). Braunschweig, DE: Schwetschtke u. Sohn.
Heidarpour, A., Fourouzandeh-Shahraki, A-D., & Eghbalsaied, S. (2011). Effects of Spirulina platensis on performance, digestibility and serum biochemical parameters of Holstein calves. African Journal of Agricultural Research, 6(22), 5061-5065.
Holman, B. W. B., & Malau-Aduli, A. E.O. (2013). Spirulina as a livestock supplement and animal feed. Journal of Animal Physiology and Animal Nutrition, 97(4), 615-623. DOI: http://DOI: https://doi.org/10.1111/j.1439-0396.2012.01328.x
Holman, B. W. B., Kashani, A., & Malau-Aduli, A .E. O. (2012). Growth and body conformation responses of genetically divergent Australian sheep to Spirulina (Arthrospira platensis) supplementation. American Journal of Experimental Agriculture, 2(2), 160-173. DOI: http://DOI: https://doi.org/10.9734/AJEA/2012/992
Jameson, G. (2020). Focused on farming [YouTube Channel]. Retrieved from https://www.youtube.com/watch?v=NZ5uCLHYr3k&t=5s
Kalio, G. A., Okafor B. B., & Ingweye, J. N. (2014). Haematology and biochemistry of West African Dwarf (wad) bucks fed crop by-products in humid tropical Nigeria. International Journal of Science and Technology, 18(2), 1227-1234.
Khalifa, E. I., Hassanien, H. A. M., Mohamed, A. H., Hussein, A. M., & Azza, A. M. A-E. (2016). Influence of addition Spirulina platensis algae powder on reproductive and productive performance of dairy zaraibi goats. Egyptian Journal Nutrition and Feeds, 19(2), 211-225. DOI: https://doi.org/10.21608/EJNF.2016.74901
Khan, Z., Bhadouria, P., & Bisen, P. S. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379. DOI: http://dx.doi.org/10.2174/138920105774370607
Kulpys, J., Paulauskas, E., Pilipavicius, V., & Stankevicius, R. (2009). Influence of cyanobacteria arthrospira Spirulina platensis biomass additive towards the body condition of lactation cows and biochemical milk indexes. Agronomy Research, 7(2), 823-835.
Kumar, D., De, K., Saxena, V. K., & Naqvi, S. M. K. (2015). The effect of nutritional stress on sperm motion characteristics and sexual behaviour of rams in a semi-arid tropical environment. Journal of Animal and Feed Sciences, 24(2), 107-112. DOI: https://doi.org/10.22358/jafs/65635/2015
Liping, L., Li-an, Q., Yiquan, W., & Guorong, Y. (2011). Spirulina platensis extract supplementation attenuates oxidative stress in acute exhaustive exercise: a pilot study. International Journal of the Physical Sciences, 6(12), 2901-2906. DOI: https://doi.org/10.5897/IJPS11.319
Mahboub, H. D. H., Ramadan, S. G.A., Helal, M. A. Y., & Enas, A. K. A. (2013). Effect of maternal feeding in late pregnancy on behaviour and performance of Egyptian goat and sheep and their offspring. Global Veterinaria, 11(2), 168-176. DOI: http://doi:10.5829/idosi.gv.2013.11.2.74152
Makkar, H. P. S., Francis, G., & Becker, K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1(9), 1371-1391. DOI: http://dx.doi.org/10.1017/S1751731107000298
Manz, U., & Vuilleumier, J. P. (1988). Determination of added canthaxanthin in complete feeds and premixes with HPLC. In H. E. Keller, & F. Hoffmann (Eds.), Analytical methods for vitamins and carotinoids in feed (p. 68-71). Basel, CH: La Roch.
Meza-Herrera, C. A., Reyes-Avila, J. M., Tena-Sempere, M., Veliz-Deras, F. G., Macias-Cruz, U., Rodriguez-Martinez, R. & Arellano-Rodriguez, G. (2014). Long-term beta-carotene supplementation positively affects serum triiodothyronine concentrations around puberty onset in female goats. Small Ruminant Research, 116(2-3), 176-182. DOI: https://doi.org/10.1016/j.smallrumres.2013.10.017
National Research Council [NRC] (1978). Nutrient requirements of dairy cattle. Washington, D.C.: National Academy of Sciences.
National Research Council [NRC]. (2007). Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. Washington, DC: National Academies Press.
Quigley, S. P., & Poppi, D. P. (2009). Strategies to increase growth of weaned bali calves. Canberra, AU: ACIAR. Retrieved from http://era.daf.qld.gov.au/id/eprint/2391/1/LPS%202004%20023.pdf
Panjaitan, T., Quigley, S., McLennan, S., & Poppi, D. (2010). Effect of the concentration of Spirulina (Spirulina platensis) algae in the drinking water on water intake by cattle and the proportion of algae bypassing the rumen. Animal Production Science, 50(6), 405-409. DOI: https://doi.org/10.1071/AN09194
Panjaitan, T., Quigley, S. P., McLennan, S. R., Swain, A. J., & Poppi, D. P. (2014). Spirulina (Spirulina platensis) algae supplementation increases microbial protein production and feed intake and decreases retention time of digesta in the rumen of cattle. Animal Production Science, 55(4), 535-543. DOI: https://doi.org/10.1071/AN13146
Peiretti, P., & Meineri, G. (2008). Effects of diets with increasing levels of Spirulina platensis on the performance and apparent digestibility in growing rabbits. Livestock Science, 118(1-2), 173-177. DOI: https://doi.org/10.1016/j.livsci.2008.04.017
Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology, 65(6), 635-648. DOI: http://DOI: https://doi.org/10.1007/s00253-004-1647-x
Riss, J., Decordé, K., Sutra, T., Baccou, J-C., Jouy, N., Brune, J-P., … Rouanet, J-M. (2007). Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. Journal of Agricultural and Food Chemistry, 55(19), 7962-7967. DOI: https://doi.org/10.1021/jf070529g
Rumosa-Gwaze, F., Chimonyo, M., & Dzama, K. (2012). Effect of season and age on blood minerals, liver enzyme levels, and faecal egg counts in Nguni goats of South Africa. Czech Journal of Animal Science, 5(10), 443-453.
Sajilata, M., Singhal, R., & Kamat, M. (2008). Fractionation of lipids and purification of γ-linolenic acid (GLA) from Spirulina platensis. Food Chemistry, 109(3), 580-586. DOI: https://doi.org/10.1016/j.foodchem.2008.01.005
SAS Institute. (2003). SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc.
Tovar-Ramírez, D., Zambonino, J., Cahu, C., Gatesoupe, F.J., Vázquez-Juárez, R., & Lésel, R. (2002). Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture, 204(1-2), 113-123. DOI: http://dx.doi.org/10.1016/S0044-8486(01)00650-0
Vishnu, N., & Sumathi, R. (2014). Isolation of fresh water microalgae Chlorella sp. and its antimicrobial activity on selected pathogens. International Journal of Advanced Research in Biological Sciences, 1(3), 36-43.
Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M.S. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research, 21(6), 2-10. DOI: https://doi:10.1186/2241-5793-21-6
Yamaguchi, K. (1996). Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. Journal of Applied Phycology, 8(1), 487-502.
Zhang, J., Miao, S., Huang, S., Li, S., Zhang, J. Z., Miao, S. J., … Li, S. L. (2010). Effect on ruminal internal environment and degradation of dairy cow by different level of spirilina. China Cattle Science, 36(6), 32-36.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.