Using canonical correlation analysis to understand the rumen biohydrogenation patterns of linoleic and alpha-linolenic acids in the rumen fluid of bovines

Palavras-chave: cattle; lipid metabolism; multivariate analysis; polyunsaturated fatty acid; ruminant.

Resumo

The objective of this study was to determine the multivariate relationship among linoleic acid, alpha-linolenic acid, and their main rumen biohydrogenation (BH) intermediates and products in bovine rumen fluid using canonical correlation analysis (CCA). A dataset consisting of 1177 observations generated by 107 in vitro rumen incubation systems of pure and mixed linoleic acid (18:2-c9, c12) and alpha-linolenic acid (18:3-c9, c12, c15) was gathered. Two canonical variates were defined: A: composed of the nine main BH intermediates and products (18:2-c9, t11; 18:2-t11, c15; 18:1-t11; 18:1-t9; 18:1-t6; 18:1-c11; 18:1-c6; 18:1-c9; 18:0) of 18:2-c9, c12 and 18:3-c9, c12, c15 and B: composed of 18:2-c9, c12 and 18:3-c9, c12, c15. Two canonical functions between A and B with significant canonical correlations (R1=0.990 and R2=0.738; p <0.01) were obtained. However, only the first function was selected for CCA. Exploration of canonical loadings for first function, revealed the following quantitative significance (absolute value) order for fatty acids (FA) within their respective canonical variates: A: 18:0(0.958)>18:1-t9(0.837)>18:1-c11(0.835)>18:1-c6(0.824)>18:1-t11(0.747)>18:1-c9(0.738)>18:1-t6(0.415)>18:2-t11, c15(0.387)> 18:2-c9, t11(0.239); B: 18:2-c9, c12(0.667)>18:3-c9, c12, c15(0.488). The CCA showed that 18:2-c9, c12 has a greater contribution than that of 18:3-c9, c12, c15 on the production of the aforementioned BH intermediates, in which 18:0, as well as the groups of 18:1 cis and trans-FA were mainly affected.

Downloads

Não há dados estatísticos.

Referências

Chiofalo, B., Di Rosa, A. R., Lo Presti, V., Chiofalo, V., & Liotta, L. (2020). Effect of supplementation of herd diet with olive cake on the composition profile of milk and on the composition, quality and sensory profile of cheeses made therefrom. Animals, 10(6), 977. DOI: https://dx.doi.org/10.3390%2Fani10060977

Dewanckele, L., Toral, P. G., Vlaeminck, B., & Fievez, V. (2020). Invited review: role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. Journal of Dairy Science, 103(9), 7655-7681. DOI: https://doi.org/10.3168/jds.2019-17662

Eftekhari, M. H., Aliasghari, F., Babaei-Beigi, M. A., & Hasanzadeh, J. (2013). Effect of conjugated linoleic acid and omega-3 fatty acid supplementation on inflammatory and oxidative stress markers in atherosclerotic patients. ARYA Atherosclerosis, 9(6), 311-318.

Ferlay, A., Bernard, L., Meynadier, A., & Malpuech-Brugère, C. (2017). Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie, 141(1), 107-120. DOI: https://doi.org/10.1016/j.biochi.2017.08.006

Garcés, R., & Mancha, M. (1993). One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Analytical Biochemistry, 211(1), 139-143. DOI: https://doi.org/10.1006/abio.1993.1244

Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V., & Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. The Journal of Nutrition, 130(9), 2285-2291. DOI: https://doi.org/10.1093/jn/130.9.2285

Hair, J. F., Black, W. C., Babin, B. J, & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Upper Saddle River, NJ.: Pearson Education.

Jenkins. T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397-412. DOI: https://doi.org/10.2527/jas.2007-0588

Jouany, J. P., Lassalas, B., Doreau, M., & Glasser, F. (2007). Dynamic features of the rumen metabolism of linoleic acid, linolenic acid and linseed oil measured in vitro. Lipids, 42(4), 351-360. DOI: https://doi.org/10.1007/s11745-007-3032-x

Kepler, C. R., Hirons, K. P., McNeill, J. J., & Tove, S. B. (1966). Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. Journal of Biological Chemistry, 241(6), 1350-1354.

Lee, Y. J., & Jenkins, T. C. (2011). Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. The Journal of Nutrition, 141(8), 1445-1450. DOI: https://doi.org/10.3945/jn.111.138396

Makmur, M., Zain, M., Agustin, F., Sriagtula, R., & Putri, E. M. (2020). In vitro rumen biohydrogenation of unsaturated fatty acids in tropical grass-legume rations. Veterinary World, 13(4), 661-668. DOI: https://dx.doi.org/10.14202%2Fvetworld.2020.661-668

Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā: The Indian Journal of Statistics, 36(2), 115-128.

McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109. DOI: https://doi.org/10.1042/bj0430099

Nudda, A., Battacone, G., Boaventura-Neto, O., Cannas, A., Francesconi, A. H. D., Atzori, A. S., & Pulina, G. (2014). Feeding strategies to design the fatty acid profile of sheep milk and cheese. Revista Brasileira de Zootecnia, 43(8), 445-456. DOI: https://doi.org/10.1590/S1516-35982014000800008

Reiser, R. (1951). Hydrogenation of polyunsaturated fatty acids by the ruminant. Federation Proceedings, 10(1), 236.

Ribeiro, C. V. D. M., Eastridge, M. L., Firkins, J. L., St-Pierre, N. R., & Palmquist, D. L. (2007). Kinetics of fatty acid biohydrogenation in vitro. Journal of Dairy Science, 90(3), 1405-1416. DOI: https://doi.org/10.3168/jds.S0022-0302(07)71626-0

Statistical Analysis System [SAS]. (2010). Support. Sample 24983: macro to test multivariate normality. Cary, NC: SAS Institute. Retrieved from http://support.sas.com/kb/24/983.html

Shingfield, K. J., & Wallace, R. J. (2014). Synthesis of conjugated linoleic acid in ruminants and humans. In B. F. Sels, & A. Philippaerts (Eds.), conjugated linoleic acids and conjugated vegetable oils (p. 1-65). Cambridge, UK: Royal Society of Chemistry.

Tilley, J. M. A., & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Vargas, J. A. C., Pabón, M. L., Olivera, M., & Carulla, J. E. (2010). Role of stearoyl CoA desaturase on conjugated Linoleic acid concentration in bovine milk: review. Colombian Journal of Veterinary and Animal Science, 23(4), 493-500.

Vargas, J. A. C., Olivera, M., Ribeiro, C. V. D. M., & Daza, E. E. (2018). In vitro rumen biohydrogenation kinetics of mixed linoleic and alfa-linolenic acids. Colombian Journal of Veterinary and Animal Science, 31(3), 213-222. DOI: http://dx.doi.org/10.17533/udea.rccp.v31n3a06

Viladomiu, M., Hontecillas, R., & Bassaganya-Riera, J. (2016). Modulation of inflammation and immunity by dietary conjugated linoleic acid. European Journal of Pharmacology, 785(1), 87-95. DOI: https://doi.org/10.1016/j.ejphar.2015.03.095

Zubiria, I., Garcia-Rodriguez, A., Atxaerandio, R., Ruiz, R., Benhissi, H., Mandaluniz, N., ... Goiri, I. (2019). Effect of feeding cold-pressed sunflower cake on ruminal fermentation, lipid metabolism and bacterial community in dairy cows. Animals, 9(10), 755. DOI: https://doi.org/10.3390/ani9100755

Publicado
2022-09-14
Como Citar
Castillo Vargas, J. A. (2022). Using canonical correlation analysis to understand the rumen biohydrogenation patterns of linoleic and alpha-linolenic acids in the rumen fluid of bovines. Acta Scientiarum. Animal Sciences, 45(1), e57724. https://doi.org/10.4025/actascianimsci.v44i1.57724
Seção
Nutrição de Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus