Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study

  • Majeed Hameed Ajafar Al-Qasim Green University
  • Alaa Hasan Kadhim Al-Qasim Green University
  • Tahreer Mohammed Al-Thuwaini Al-Qasim Green University https://orcid.org/0000-0003-4534-2963
  • Mohammed Baqur Sahib Al-Shuhaib Al-Qasim Green University
  • Tamadhur Hani Hussein Al-Qasim Green University
Palavras-chave: birth type; domestic animals; ovarian follicle; reproductive performance; TGF-β.

Resumo

. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.

Downloads

Não há dados estatísticos.

Referências

Abdurahman, A., Du, X., Yao, Y., Sulaiman, Y., Aniwashi, J., & Li, Q. (2019). Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. International Journal of Molecular Sciences, 20(11), 2732.‏ DOI: https://doi.org/10.3390/ijms20112732

Alam, M. H., & Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 19(1), 13-23. DOI: https://doi.org/10.1002/rmb2.12292‏

Ajafar, M. H., Kadhim, A. H., & AL-Thuwaini, T. M. (2022). The Reproductive Traits of Sheep and Their Influencing Factors. Reviews in Agricultural Science, 10, 82-89. DOI: https://doi.org/10.7831/ras.10.0_82

Ali, M. A., Kadhim, A. H., & Al-Thuwaini, T. M. (2022). Genetic variants of the bone morphogenetic protein gene and its association with estrogen and progesterone levels with litter size in Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(4), 1017-1022.‏

Al-Thuwaini, T. M. (2021a). The relationship of hematological parameters with adaptation and reproduction in sheep: a review study. Iraqi Journal of Veterinary Sciences, 35(3), 575-580.‏ DOI: https://doi.org/10.33899/ijvs.2020.127253.1490

Al-Thuwaini, T. M. (2021b). Novel single nucleotide polymorphism in the prolactin gene of Awassi ewes and its role in the reproductive traits. Iraqi Journal of Veterinary Sciences, 35(3), 429-435. DOI: https://doi.org/10.33899/ijvs.2020.126973.1423

AL-Thuwaini, T. M. (2022). Adiponectin and Its Physiological Function in Ruminant Livestock. Reviews in Agricultural Science, 10, 115-122. DOI: https://doi.org/10.7831/ras.10.0_115

Al-Thuwaini, T. M., & Al-Hadi, A. B. A. (2022). Association of lamb sex with body measurements in single and twin on the Awassi ewes. Advances in Animal and Veterinary Sciences, 10(8), 1849-1853.‏

DOI: https://dx.doi.org/10.17582/journal.aavs/2022/10.8.1849.1853

Al-Thuwaini, T. M., & Kareem, Z. A. (2022). Novel missense variant L46Q of fatty acid synthase gene and fatty acids content in Awassi sheep. Acta Scientiarum. Animal Sciences, 44.‏ DOI: 10.4025/actascianimsci.v44i1.56273

Andrade, G. M., Collado, M. D., Meirelles, F. V., Silveira, J. C. D., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485-496. DOI: https://doi.org/10.21451/1984-3143-AR2019-0051

Belli, M., & Shimasaki, S. (2018). Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitamins and Hormones, 107, 317-348.‏ DOI: https://doi.org/10.1016/bs.vh.2017.12.003

Castro, F. C., Cruz, M. H. C., & Leal, C. L. V. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australasian Journal of Animal Sciences, 29(8), 1065.‏ DOI: https://doi.org/10.5713/ajas.15.0797

Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305.‏ DOI: https://doi.org/10.18632/aging.101391

Dalbies-Tran, R., Cadoret, V., Desmarchais, A., Elis, S., Maillard, V., Monget, P., … Uzbekova, S. (2020). A comparative analysis of oocyte development in mammals. Cells, 9(4), 1002.‏ DOI: https://doi.org/10.3390/cells9041002

Estienne, A., Lahoz, B., Jarrier-Gaillard, P., Bodin, L., Folch, J., Alabart, J. L., … Monniaux, D. (2017). BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction, 153(4), 395-404.‏ DOI: https://doi.org/10.1530/REP-16-0507

Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019

Haas, C. S., Rovani, M. T., Ilha, G. F., Bertolin, K., Ferst, J. G., Bridi, A., … Gasperin, B. G. (2019). Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Animal Reproduction, 16, 829-837.‏ DOI: https://doi.org/10.21451/1984-3143-ar2018-0146

Heath, D. A., Pitman, J. L., & McNatty, K. P. (2017). Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction, 154(4), 521-534.‏ DOI: https://doi.org/10.1530/REP-17-0188

Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-wide association study reveals candidate genes for litter size traits in pelibuey sheep. Animals, 10(3), 434.‏ DOI: https://doi.org/10.3390/ani10030434

Imran, F. S., Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Lepretre, F. (2021). A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochemical Genetics, 59(2), 422-436.‏ DOI: https://doi.org/10.1007/s10528-020-10006-x

Juengel, J. L., Smith, P. R., Quirke, L. D., French, M. C., & Edwards, S. J. (2018). The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Animal Reproduction, 15(3), 180.‏ DOI: https://doi.org/10.21451/1984-3143-AR2018-0055

Kadhem, A. F., & Al-Thuwaini, T. M. (2022). Influence of litter size on the hematologic profile of Awassi ewes during gestation and lactation. Veterinary Integrative Sciences, 20(3), 625-633.‏ DOI: https://doi. org/10.12982/VIS. 2022.047

Kawashima, I., & Kawamura, K. (2018). Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Systems Biology in Reproductive Medicine, 64(1), 3-11.‏ DOI: https://doi.org/10.1080/19396368.2017.1411990

Liu, T., Qin, Q. Y., Qu, J. X., Wang, H. Y., & Yan, J. (2020). Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chinese Medical Journal, 133(14), 1711. DOI: https://doi.org/10.1097/CM9.0000000000000850

Lochab, A. K., & Extavour, C. G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 427(2), 258-269. DOI: https://doi.org/10.1016/j.ydbio.2017.03.002

Mohammed, M. H., Al-Thuwaini, T. M., & Al-Shuhaib, M. B. S. (2021). The association of the single-and twin-bearing with the lipid profile on the status of the reproductive hormones in iraqi awassi ewes. Advances in Animal and Veterinary Sciences, 9(9), 1456-1459. DOI: https://doi.org/10.17582/journal.aavs/2021/9.9.1456.1459

Muñoz-García, C., Torres-Hernández, G., Gallegos-Sánchez, J., Cuca-García, J. M., Salazar-Ortiz, J., & Cortez-Romero, C. (2020). Role of fecundity genes in ovulation rate and litter size in sheep. Agro Productividad, 13(6). DOI: https://doi.org/10.32854/agrop.v13i6.1630

Nagdy, H., Mahmoud, K. G. M., Kandiel, M. M., Helmy, N. A., Ibrahim, S. S., Nawito, M. F., & Othman, O. E. (2018). PCR-RFLP of bone morphogenetic protein 15 (BMP15/ FecX) gene as a candidate for prolificacy in sheep. International Journal of Veterinary Science and Medicine, 6(sup1), S68-S72. DOI: https://doi.org/10.1016/j.ijvsm. 2018.01.001

Niu, Z. G., Qin, J., Jiang, Y., Ding, X. D., Ding, Y. G., Tang, S., & Shi, H. C. (2021). The identification of mutation in BMP15 gene associated with litter size in Xinjiang cele black sheep. Animals, 11(3), 668.‏ DOI: https://doi.org/10.3390/ani11030668

Piotrowska, H., Kempisty, B., Sosinska, P., Ciesiolka, S., Bukowska, D., Antosik, P., … Zabel, M. (2013). The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Veterinarni Medicina, 58(10), 505-515.‏ DOI: https://doi.org/10.17221/7082-VETMED

Qin, Y., Tang, T., Li, W., Liu, Z., Yang, X., Shi, X., … He, Z. (2019). Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Frontiers in Cell and Developmental Biology, 286.‏ DOI: https://doi.org/10.3389/fcell.2019.00286

Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.‏

Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750.‏ DOI: https://doi.org/10.1007/s10815-018-1268-4

Santibanez, J. F., & Kocic, J. (2012). Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomolecular Concepts, 3(5), 429-445.‏ DOI: https://doi.org/10.1515/bmc-2012-0015

Shimasaki, S., Moore, R. K., Otsuka, F., & Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 25(1), 72-101.‏ DOI: https://doi.org/10.1210/er.2003-0007

Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF 9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732-739. DOI: https://doi.org/10.1111/age.12190

‏Tesema, Z., Deribe, B., Kefale, A., Lakew, M., Tilahun, M., Shibesh, M., … Yizengaw, L. (2020). Survival analysis and reproductive performance of Dorper x Tumele sheep. Heliyon, 6(4), e03840.‏ DOI: https://doi.org/10.1016/j.heliyon.2020.e03840

Tong, Z., Guo, J., Glen, R. C., Morrell, N. W., & Li, W. (2019). A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Scientific Reports, 9(1), 1-9.‏ DOI: https://doi.org/10.1038/s41598-019-49758-x

Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571

Wang, W., La, Y., Zhou, X., Zhang, X., Li, F., & Liu, B. (2018). The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Animal Reproduction Science, 189, 19-29. DOI: https://doi.org/10.1016/j.anireprosci.2017.12.003

Zhang, H., Klausen, C., Zhu, H., Chang, H. M., & Leung, P. C. (2015). BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology, 156(11), 4269-4280.‏ DOI: https://doi.org/10.1210/en.2015-1494

Publicado
2022-12-08
Como Citar
Ajafar, M. H., Kadhim, A. H., Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Hussein, T. H. (2022). Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study . Acta Scientiarum. Animal Sciences, 45(1), e57927. https://doi.org/10.4025/actascianimsci.v45i1.57927
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus