Dr Association of bone morphogenetic protein 15 and growth differentiation factor 9 with litter size in livestock: a review study
Resumo
. Litter size is one of the crucial factors in livestock production and is of high economic value, which is affected by ovulation rate, hormones, and growth factors. Growth factors play a multifaceted role in reproductive physiology. This review aims to investigate the association of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) with litter size in livestock. The transforming growth factor β (TGF- β) superfamily includes more than 34 members; GDF9 and BMP15 are among the most significant factors for regulating fertility and litter size in most livestock species. Ovarian follicles release BMP15 and GDF9 that are involved in the maturation of primary follicles into the basal form, proliferation of granulosa and theca cells, steroidogenesis, ovulation, and formation of the corpus luteum. Besides, these factors are highly expressed in oocytes and are necessary for female fertility and multiple ovulation in several livestock species. Animals with two inactive copies of these factors are sterile, while those with one inactive copy are fertile. Thus, the present review provides valuable information on the association of BMP15 and GDF9 with litter size in livestock that can be used as biological markers of multiple ovulation or for improving fertility in livestock.
Downloads
Referências
Abdurahman, A., Du, X., Yao, Y., Sulaiman, Y., Aniwashi, J., & Li, Q. (2019). Smad4 feedback enhances BMPR1B transcription in ovine granulosa cells. International Journal of Molecular Sciences, 20(11), 2732. DOI: https://doi.org/10.3390/ijms20112732
Alam, M. H., & Miyano, T. (2020). Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 19(1), 13-23. DOI: https://doi.org/10.1002/rmb2.12292
Ajafar, M. H., Kadhim, A. H., & AL-Thuwaini, T. M. (2022). The Reproductive Traits of Sheep and Their Influencing Factors. Reviews in Agricultural Science, 10, 82-89. DOI: https://doi.org/10.7831/ras.10.0_82
Ali, M. A., Kadhim, A. H., & Al-Thuwaini, T. M. (2022). Genetic variants of the bone morphogenetic protein gene and its association with estrogen and progesterone levels with litter size in Awassi ewes. Iraqi Journal of Veterinary Sciences, 36(4), 1017-1022.
Al-Thuwaini, T. M. (2021a). The relationship of hematological parameters with adaptation and reproduction in sheep: a review study. Iraqi Journal of Veterinary Sciences, 35(3), 575-580. DOI: https://doi.org/10.33899/ijvs.2020.127253.1490
Al-Thuwaini, T. M. (2021b). Novel single nucleotide polymorphism in the prolactin gene of Awassi ewes and its role in the reproductive traits. Iraqi Journal of Veterinary Sciences, 35(3), 429-435. DOI: https://doi.org/10.33899/ijvs.2020.126973.1423
AL-Thuwaini, T. M. (2022). Adiponectin and Its Physiological Function in Ruminant Livestock. Reviews in Agricultural Science, 10, 115-122. DOI: https://doi.org/10.7831/ras.10.0_115
Al-Thuwaini, T. M., & Al-Hadi, A. B. A. (2022). Association of lamb sex with body measurements in single and twin on the Awassi ewes. Advances in Animal and Veterinary Sciences, 10(8), 1849-1853.
DOI: https://dx.doi.org/10.17582/journal.aavs/2022/10.8.1849.1853
Al-Thuwaini, T. M., & Kareem, Z. A. (2022). Novel missense variant L46Q of fatty acid synthase gene and fatty acids content in Awassi sheep. Acta Scientiarum. Animal Sciences, 44. DOI: 10.4025/actascianimsci.v44i1.56273
Andrade, G. M., Collado, M. D., Meirelles, F. V., Silveira, J. C. D., & Perecin, F. (2019). Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 16(3), 485-496. DOI: https://doi.org/10.21451/1984-3143-AR2019-0051
Belli, M., & Shimasaki, S. (2018). Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitamins and Hormones, 107, 317-348. DOI: https://doi.org/10.1016/bs.vh.2017.12.003
Castro, F. C., Cruz, M. H. C., & Leal, C. L. V. (2016). Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - a review. Asian-Australasian Journal of Animal Sciences, 29(8), 1065. DOI: https://doi.org/10.5713/ajas.15.0797
Chu, Y. L., Xu, Y. R., Yang, W. X., & Sun, Y. (2018). The role of FSH and TGF-β superfamily in follicle atresia. Aging, 10(3), 305. DOI: https://doi.org/10.18632/aging.101391
Dalbies-Tran, R., Cadoret, V., Desmarchais, A., Elis, S., Maillard, V., Monget, P., … Uzbekova, S. (2020). A comparative analysis of oocyte development in mammals. Cells, 9(4), 1002. DOI: https://doi.org/10.3390/cells9041002
Estienne, A., Lahoz, B., Jarrier-Gaillard, P., Bodin, L., Folch, J., Alabart, J. L., … Monniaux, D. (2017). BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction, 153(4), 395-404. DOI: https://doi.org/10.1530/REP-16-0507
Ghoreishi, H., Fathi-Yosefabad, S., Shayegh, J., & Barzegari, A. (2019). Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Archives Animal Breeding, 62(2), 565-570. DOI: https://doi.org/10.5194/aab-62-565-2019
Haas, C. S., Rovani, M. T., Ilha, G. F., Bertolin, K., Ferst, J. G., Bridi, A., … Gasperin, B. G. (2019). Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Animal Reproduction, 16, 829-837. DOI: https://doi.org/10.21451/1984-3143-ar2018-0146
Heath, D. A., Pitman, J. L., & McNatty, K. P. (2017). Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction, 154(4), 521-534. DOI: https://doi.org/10.1530/REP-17-0188
Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-wide association study reveals candidate genes for litter size traits in pelibuey sheep. Animals, 10(3), 434. DOI: https://doi.org/10.3390/ani10030434
Imran, F. S., Al-Thuwaini, T. M., Al-Shuhaib, M. B. S., & Lepretre, F. (2021). A Novel Missense Single Nucleotide Polymorphism in the GREM1 Gene is Highly Associated with Higher Reproductive Traits in Awassi Sheep. Biochemical Genetics, 59(2), 422-436. DOI: https://doi.org/10.1007/s10528-020-10006-x
Juengel, J. L., Smith, P. R., Quirke, L. D., French, M. C., & Edwards, S. J. (2018). The local regulation of folliculogenesis by members of the transforming growth factor superfamily and its relevance for advanced breeding programmes. Animal Reproduction, 15(3), 180. DOI: https://doi.org/10.21451/1984-3143-AR2018-0055
Kadhem, A. F., & Al-Thuwaini, T. M. (2022). Influence of litter size on the hematologic profile of Awassi ewes during gestation and lactation. Veterinary Integrative Sciences, 20(3), 625-633. DOI: https://doi. org/10.12982/VIS. 2022.047
Kawashima, I., & Kawamura, K. (2018). Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Systems Biology in Reproductive Medicine, 64(1), 3-11. DOI: https://doi.org/10.1080/19396368.2017.1411990
Liu, T., Qin, Q. Y., Qu, J. X., Wang, H. Y., & Yan, J. (2020). Where are the theca cells from: the mechanism of theca cells derivation and differentiation. Chinese Medical Journal, 133(14), 1711. DOI: https://doi.org/10.1097/CM9.0000000000000850
Lochab, A. K., & Extavour, C. G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Developmental Biology, 427(2), 258-269. DOI: https://doi.org/10.1016/j.ydbio.2017.03.002
Mohammed, M. H., Al-Thuwaini, T. M., & Al-Shuhaib, M. B. S. (2021). The association of the single-and twin-bearing with the lipid profile on the status of the reproductive hormones in iraqi awassi ewes. Advances in Animal and Veterinary Sciences, 9(9), 1456-1459. DOI: https://doi.org/10.17582/journal.aavs/2021/9.9.1456.1459
Muñoz-García, C., Torres-Hernández, G., Gallegos-Sánchez, J., Cuca-García, J. M., Salazar-Ortiz, J., & Cortez-Romero, C. (2020). Role of fecundity genes in ovulation rate and litter size in sheep. Agro Productividad, 13(6). DOI: https://doi.org/10.32854/agrop.v13i6.1630
Nagdy, H., Mahmoud, K. G. M., Kandiel, M. M., Helmy, N. A., Ibrahim, S. S., Nawito, M. F., & Othman, O. E. (2018). PCR-RFLP of bone morphogenetic protein 15 (BMP15/ FecX) gene as a candidate for prolificacy in sheep. International Journal of Veterinary Science and Medicine, 6(sup1), S68-S72. DOI: https://doi.org/10.1016/j.ijvsm. 2018.01.001
Niu, Z. G., Qin, J., Jiang, Y., Ding, X. D., Ding, Y. G., Tang, S., & Shi, H. C. (2021). The identification of mutation in BMP15 gene associated with litter size in Xinjiang cele black sheep. Animals, 11(3), 668. DOI: https://doi.org/10.3390/ani11030668
Piotrowska, H., Kempisty, B., Sosinska, P., Ciesiolka, S., Bukowska, D., Antosik, P., … Zabel, M. (2013). The role of TGF superfamily gene expression in the regulation of folliculogenesis and oogenesis in mammals: a review. Veterinarni Medicina, 58(10), 505-515. DOI: https://doi.org/10.17221/7082-VETMED
Qin, Y., Tang, T., Li, W., Liu, Z., Yang, X., Shi, X., … He, Z. (2019). Bone morphogenetic protein 15 knockdown inhibits porcine ovarian follicular development and ovulation. Frontiers in Cell and Developmental Biology, 286. DOI: https://doi.org/10.3389/fcell.2019.00286
Rossi, R. O. D. S., Portela, A. M. L. R., Passos, J. R. S., Cunha, E. V., Silva, A. W. B., Costa, J. J. N., … Silva, J. R. V. (2015). Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Animal Reproduction, 12(4), 910-919.
Sanfins, A., Rodrigues, P., & Albertini, D. F. (2018). GDF-9 and BMP-15 direct the follicle symphony. Journal of Assisted Reproduction and Genetics, 35(10), 1741-1750. DOI: https://doi.org/10.1007/s10815-018-1268-4
Santibanez, J. F., & Kocic, J. (2012). Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomolecular Concepts, 3(5), 429-445. DOI: https://doi.org/10.1515/bmc-2012-0015
Shimasaki, S., Moore, R. K., Otsuka, F., & Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocrine Reviews, 25(1), 72-101. DOI: https://doi.org/10.1210/er.2003-0007
Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O., & Moraes, J. C. F. (2014). Mutation in the protease cleavage site of GDF 9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), 732-739. DOI: https://doi.org/10.1111/age.12190
Tesema, Z., Deribe, B., Kefale, A., Lakew, M., Tilahun, M., Shibesh, M., … Yizengaw, L. (2020). Survival analysis and reproductive performance of Dorper x Tumele sheep. Heliyon, 6(4), e03840. DOI: https://doi.org/10.1016/j.heliyon.2020.e03840
Tong, Z., Guo, J., Glen, R. C., Morrell, N. W., & Li, W. (2019). A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Scientific Reports, 9(1), 1-9. DOI: https://doi.org/10.1038/s41598-019-49758-x
Wang, F., Chu, M., Pan, L., Wang, X., He, X., Zhang, R., … Di, R. (2021). Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals, 11(2), 571. DOI: https://doi.org/10.3390/ani11020571
Wang, W., La, Y., Zhou, X., Zhang, X., Li, F., & Liu, B. (2018). The genetic polymorphisms of TGFβ superfamily genes are associated with litter size in a Chinese indigenous sheep breed (Hu sheep). Animal Reproduction Science, 189, 19-29. DOI: https://doi.org/10.1016/j.anireprosci.2017.12.003
Zhang, H., Klausen, C., Zhu, H., Chang, H. M., & Leung, P. C. (2015). BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology, 156(11), 4269-4280. DOI: https://doi.org/10.1210/en.2015-1494
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.