Dietary supplementation with soybean oil has not favored the tilapia growth in BFT tanks submitted to feeding restriction
Resumo
The present work aimed at assessing the possibility of compensating the notorious deficiencies of bioflocs in lipids by supplementing the tilapia commercial diet with soybean oil. In the positive control, there was no feeding restriction nor dietary supplementation with soybean oil. In the experimental treatments, the commercial diet was restricted by 25% over the positive control level. In the negative control tanks, there was feeding restriction and the artificial diet had no oil supplementation. In the experimental tanks, soybean oil was mixed daily with the commercial diet at the levels of 0.6%, 1.2 and 2.4%. Additionally, there were fed-restricted tanks that received a daily supplementation of 1.2% soybean oil mixed with dry molasses, and not with the commercial diet. In general, only the restriction of the commercial diet affected the water quality. The supplementation of the artificial diet with soybean oil up to 2.4% has not improved the proximate composition of bioflocs, nor the fish growth performance. It was concluded that the strategy of supplementing the Nile tilapia juveniles’ commercial diet with increasing levels of soybean meal, in BFT tanks submitted to 25%-feeding restriction, was not capable of avoiding the fish growth performance deterioration.
Downloads
Referências
Association of Official Analytical Chemistry [AOAC]. (2000). Official Methods of Analysis (17th ed.). Washington, D.C.: AOAC.
Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. DOI: https://doi.org/10.1016/S0044-8486(99)00085-X
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture. 264(1-4), 140-147. DOI: https://doi.org/10.1016/j.aquaculture.2006.11.025
Avnimelech, Y. (2009). Biofloc technology: A pratical guide book. Baton Rouge (p. 182). Louisiana, US: The World Aquaculture Society.
Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283(1-4), 29-35. DOI: https://doi.org/10.1016/j.aquaculture.2008.06.036
Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, (259-267). DOI: https://doi.org/10.1016/j.aquaculture.2017.11.036
Baloi, M. F., Sterzelecki, F. C., Sugai, J. K., Passini, G., Carvalho, C. V. A., & Cerqueira, V. R. (2017). Growth performance, body composition and metabolic response to feeding rates in juvenile Brazilian sardine Sardinella brasiliensis. Aquaculture Nutrition, 23(6), 1458-1466. DOI: https://doi.org/10.1111/anu.12521
Bauer, W., Prentice-Hernandez, C., Tesser, M. B., Wasielesky Jr, W., & Poersch, L. H. (2012). Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture, 342-343, 112-116. DOI: https://doi.org/10.1016/j.aquaculture.2012.02.023
Boyd, C. E., & Tucker, C. S. (1992). Water quality and pond soil analyses for aquaculture. Water quality and pond soil analyses for aquaculture (p. 183). Auburn, AL: Auburn University.
Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 47(1), 6-41. DOI: https://doi.org/10.1111/jwas.12241
Boscolo, W. R., Hayashi, C., & Meurer, F. (2002). Apparent digestibility of the energy and nutrients of conventional and alternatives foods for Nile tilapia (Oreochromis niloticus). Revista Brasileira de Zootecnia, 31(2), 539-545. DOI: https://doi.org/10.1590/S1516-35982002000300001
Cavalcante, D. D. H., Lima, F. R. D. S., Rebouças, V. T., & Sá, M. V. C. (2017). Nile tilapia culture under feeding restriction in bioflocs and bioflocs plus periphyton tanks. Acta Scientiarum. Animal Sciences, 39(3), 223-228. DOI: https://doi.org/10.4025/actascianimsci.v39i3.33574
Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard Methods for the Examination of water and wastewater (20th ed.). American Public Health Association (APHA), American Water Works Association and Water Environmental Federation, Washington, DC: APHA.
Crab, R., Chielens, B., Wille, M., Bossier, P., & Verstraete, W. (2010). The effect of different carbon sources on the nutritional value of bioflocs, a feed for Macrobrachium rosenbergii postlarvae. Aquaculture Research, 41(4), 559-567. DOI: https://doi.org/10.1111/j.1365-2109.2009.02353.x
da Silva, K. R., Wasielesky Jr, W., & Abreu, P. C. (2013). Nitrogen and phosphorus dynamics in the biofloc production of the pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 44(1), 30-41. DOI: https://doi.org/10.1111/jwas.12009
da Silva, M. A., de Alvarenga, É. R., Costa, F. F. B. D., Turra, E. M., Alves, G. F. D. O., Manduca, ... & Teixeira, E. D. A. (2020). Feeding management strategies to optimize the use of suspended feed for Nile tilapia (Oreochromis niloticus) cultivated in bioflocs. Aquaculture Research, 51(2), 605-615. DOI: https://doi.org/10.1111/are.14408
Dantas Jr, E. M., Valle, B. C. S., Brito, C. M. S., Calazans, N. K. F., Peixoto, S. R. M., & Soares, R. B. (2016). Partial replacement of fishmeal with biofloc meal in the diet of postlarvae of the Pacific white shrimp Litopenaeus vannamei. Aquaculture nutrition, 22(2), 335-342. DOI: https://doi.org/10.1111/anu.12249
De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, 277(3-4), 125-137. DOI: https://doi.org/10.1016/j.aquaculture.2008.02.019
dos Santos, R. B., Izel‐Silva, J., Fugimura, M. M. S., Suita, S. M., Ono, E. A., & Affonso, E. G. (2021). Growth performance and health of juvenile tambaqui, Colossoma macropomum, in a biofloc system at different stocking densities. Aquaculture Research, 52(8), 3549-3559. DOI: https://doi.org/10.1111/are.15196
Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358. DOI: https://doi.org10.1016/j.aquaculture.2006.03.019
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P., & De Schryver, P. (2014). The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426-427, 105-111. DOI: https://doi.org/10.1016/j.aquaculture.2014.01.023
Ferreira, G. S., Santos, D., Schmachtl, F., Machado, C., Fernandes, V., Bögner, M., ... & Vieira, F. N. (2021). Heterotrophic, chemoautotrophic and mature approaches in biofloc system for Pacific white shrimp. Aquaculture, 533, 736099. DOI: https://doi.org/10.1016/j.aquaculture.2020.736099
Furtado, P. S., Serra, F. P., Poersch, L. H., & Wasielesky, W. (2014). Acute toxicity of hydrogen peroxide in juvenile white shrimp Litopenaeus vannamei reared in biofloc technology systems. Aquaculture international, 22(2), 653-659. DOI: https://doi.org/10.1007/s10499-013-9694-x
Hamidoghli, A., Won, S., Aya, F. A., Yun, H., Bae, J., Jang, I. K., & Bai, S. C. (2020). Dietary lipid requirement of whiteleg shrimp Litopenaeus vannamei juveniles cultured in biofloc system. Aquaculture Nutrition, 26(3), 603-612. DOI: https://doi.org/10.1111/anu.13021
Hargreaves, J. A. (2013). Biofloc production systems for aquaculture (Vol. 4503, p. 1-11). Stoneville, NC: Southern Regional Aquaculture Center.
Hisano, H., Parisi, J., Cardoso, I. L., Ferri, G. H., & Ferreira, P. M. (2020). Dietary protein reduction for Nile tilapia fingerlings reared in biofloc technology. Journal of the World Aquaculture Society, 51(2), 452-462. DOI: https://doi.org/10.1111/jwas.12670
Jiao, J. G., Liu, Y., Zhang, H., Li, L. Y., Qiao, F., Chen, L. Q., … & Du, Z. Y. (2020). Metabolism of linoleic and linolenic acids in hepatocytes of two freshwater fish with different n-3 or n-6 fatty acid requirements. Aquaculture, 515, 734595. DOI: https://doi.org/10.1016/j.aquaculture.2019.734595
Khanjani, M. H., Sajjadi, M. M., Alizadeh, M., & Sourinejad, I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501. DOI: https://doi.org/10.1111/are.12985
Kuhn, D. D., Lawrence, A. L., Crockett, J., & Taylor, D. (2016). Evaluation of bioflocs derived from confectionary food effluent water as a replacement feed ingredient for fishmeal or soy meal for shrimp. Aquaculture, 454, 66-71. DOI: https://doi.org/10.1016/j.aquaculture.2015.12.009
Lara, G., Krummenauer, D., Abreu, P. C., Poersch, L. H., & Wasielesky, W. (2017). The use of different aerators on Litopenaeus vannamei biofloc culture system: effects on water quality, shrimp growth and biofloc composition. Aquaculture International, 25, 147-162. DOI: https://doi.org/10.1007/s10499-016-0019-8
Li, L., Ren, W., Liu, C., Dong, S., & Zhu, Y. (2018). Comparing trace element concentrations in muscle tissue of marbled eel Anguilla marmorata reared in three different aquaculture systems. Aquaculture Environment Interactions, 10, 13-20. DOI: https://doi.org/10.3354/aei00250
Lima, F. R. S., Apoliano, M. L. S., Cavalcante, D. H., & Sá, M. V. C. (2021). Suplementação da dieta de juvenis de tilápia criados em tanques bft (bioflocos) com dl-metionina. Ciência Animal Brasileira, 22. DOI: https://doi.org/10.1590/1809-6891v22e-63874
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422-423, 1-7. DOI: https://doi.org/10.1016/j.aquaculture.2013.11.023
Martinez-Porchas, M., Ezquerra-Brauer, M., Mendoza-Cano, F., Higuera, J. E. C., Vargas-Albores, F., & Martinez-Cordova, L. R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquaculture Reports, 16, 100257. DOI: https://doi.org/10.1016/j.aqrep.2019.100257
National Research Council [NRC]. (2011). Nutrient requirements of fish and shrimp. Washington, D.C.: National Academy Press.
Pérez‐Fuentes, J. A., Pérez‐Rostro, C. I., Hernández‐Vergara, M. P., & Monroy‐Dosta, M. D. C. (2018). Variation of the bacterial composition of biofloc and the intestine of Nile tilapia Oreochromis niloticus, cultivated using biofloc technology, supplied different feed rations. Aquaculture Research, 49(11), 3658-3668. DOI: https://doi.org/10.1111/are.13834
Prangnell, D. I., Castro, L. F., Ali, A. S., Browdy, C. L., & Samocha, T. M. (2020). The performance of juvenile Litopenaeus vannamei fed commercial diets of differing protein content, in a super-intensive biofloc-dominated system. Journal of Applied Aquaculture, 34, 1-22. DOI: https://doi.org/10.1080/10454438.2020.1766632
Promthale, P., Pongtippatee, P., Withyachumnarnkul, B., & Wongprasert, K. (2019). Bioflocs substituted fishmeal feed stimulates immune response and protects shrimp from Vibrio parahaemolyticus infection. Fish & shellfish immunology, 93, 1067-1075. DOI: https://doi.org/10.1016/j.fsi.2019.07.084
Rajkumar, M., Pandey, P. K., Aravind, R., Vennila, A., Bharti, V., & Purushothaman, C. S. (2016). Effect of different biofloc system on water quality, biofloc composition and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47(11), 3432-3444. DOI: https://doi.org/10.1111/are.12792
Rebouças, V. T., Lima, F. R. D. S., Cavalcante, D. D. H., & Sá, M. V. C. (2016). Reassessment of the suitable range of water pH for culture of Nile tilapia Oreochromis niloticus L. in eutrophic water. Acta Scientiarum. Animal Sciences, 38(4), 361-368. DOI: https://doi.org/10.4025/actascianimsci.v38i4.32051
Richter, B. L., de Castro Silva, T. S., Michelato, M., Marinho, M. T., Gonçalves, G. S., & Furuya, W. M. (2021). Combination of lysine and histidine improves growth performance, expression of muscle growth‐related genes and fillet quality of grow‐out Nile tilapia. Aquaculture Nutrition, 27(2), 568-580. DOI: https://doi.org/10.1111/anu.13207
Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. D., Lopes, D. C., & Euclides, R. F. (2011). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (3. ed.). Viçosa, MG: UFV.
SÁ, M. V. C. (2012). Limnocultura: limnologia para aquicultura. Fortaleza,CE: Edições UFC.
Sá, M. V. D. C., Pezzato, L. E., Lima, M. M. B. F., & de Magalhães Padilha, P. (2004). Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture, 238(1-4), 385-401. DOI: https://doi.org/10.1016/j.aquaculture.2004.06.011
Toledo, T. M., Silva, B. C., Vieira, F. D. N., Mouriño, J. L. P., & Seiffert, W. Q. (2016). Effects of different dietary lipid levels and fatty acids profile in the culture of white shrimp Litopenaeus vannamei (Boone) in biofloc technology: water quality, biofloc composition, growth and health. Aquaculture Research, 47(6), 1841-1851. DOI: https://doi.org/10.1111/are.12642
Wei, Y., Liao, S. A., & Wang, A. L. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465, 88-93. DOI: https://doi.org/10.1016/j.aquaculture.2016.08.040
Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453(1), 169-175. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.021
Xu, W. J., & Pan, L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356-357, 147-152. DOI: https://doi.org/10.1016/j.aquaculture.2012.05.022
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.