Thermal comfort and productive responses of 7/8 holstein-gyr cows subjected to cooling system

  • Marcos Vinícius da Silva Universidade Federal Rural de Pernambuco https://orcid.org/0000-0002-1318-2320
  • Gledson Luiz Pontes de Almeida Universidade Federal Rural de Pernambuco
  • Héliton Pandorfi Universidade Federal Rural de Pernambuco
  • Alex Souza Moraes Universidade Federal Rural de Pernambuco
  • Gleidiana Amélia Pontes de Almeida Macêdo Universidade Federal Rural de Pernambuco
  • Maria Eduarda Gonçalves de Oliveira Universidade Federal Rural de Pernambuco
  • Maria Vitória Neves de Melo Universidade Federal Rural de Pernambuco
  • Taize Calvacante Santana Universidade Federal Rural de Pernambuco
Palavras-chave: multivariate analysis; dairy cattle; evaporative cooling system.

Resumo

The objective of this research was to identify the influence of the evaporative adiabatic cooling system (EACS) on the thermal comfort and productive responses of dairy cattle, through multivariate analysis by principal components (PC), in the summer and winter seasons of the semiarid region of Pernambuco, Brazil. The data came from an experiment that included 16 multiparous lactating cows (7/8 Holstein-Gyr), randomly distributed in 4 sets, with 4 experimental phases and 4 treatments (0, 10, 20, and 30 min.). The multivariate analysis was carried out through PC for the thermal comfort indices, physiological variables, and milk production and composition. The highest milk production in the summer season was obtained for animals exposed to the cooling system for 30 min. In the winter season in the morning period, the use of the EACS for 10 min. was sufficient for improvements in milk production. The times of exposure to EACS caused changes in the composition of milk, for both seasons. Principal component analysis made it possible to verify a positive correlation of evaporative cooling with thermal comfort, physiological responses, and production and composition of milk of lactating cows.

Downloads

Não há dados estatísticos.

Referências

Albright, L. D. (1990). Environment Control for Animals and Plants (ASAE Textbook, 4, p. 453). Michigan, US: American Society of Agricultural Engineers.

Almeida Neto, L. A. D., Pandorfi, H., Almeida, G. L., & Guiselini, C. (2014). Climatização na pré-ordenha de vacas Girolando no inverno do semiárido. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 1072-1078. DOI: https://doi.org/10.1590/1807-1929/agriambi.v18n10p1072-1078

Almeida, G. L., Pandorfi, H., Barbosa, S. B., Pereira, D. F., Guiselini, C., & Almeida, G. A. (2013). Comportamento, produção e qualidade do leite de vacas Holandês-Gir com climatização no curral. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(8), 892-899. DOI: http://dx.doi.org/10.1590/S1415-43662013000800014

Almeida, G. L., Pandorfi, H., Guiselini, C., Henrique, H. M., & Almeida, G. A. (2011). Uso do sistema de resfriamento adiabático evaporativo no conforto térmico de vacas da raça girolando. Revista Brasileira de Engenharia Agrícola e Ambiental, 15(7), 754-760. DOI: https://doi.org/10.1590/S1415-43662011000700015

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507

Agência Pernambucana de Águas e Climas [APAC]. (2019). Monitoramento pluviométrico. Retrieved from http://www.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php

Armstrong, D. (1994). Heat stress interaction with shade and cooling. Journal of Dairy Science, 77(7), 2044-2050. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77149-6

Batista, P. H. D., Almeida, G. L. P., Pandorfi, H., Silva, M. V., Silva, R. A. B., Silva, J. L. B., ... Moraes Rodrigues, J. A. (2021). Thermal images to predict the thermal comfort index for Girolando heifers in the Brazilian semiarid region. Livestock Science, 251, 104667. DOI: https://doi.org/10.1016/j.livsci.2021.104667

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, 1-12. DOI: https://doi.org/10.1038/sdata.2018.214

Buffington, D. E., Collazo-Arocho, A., Canton, G. H., Pitt, D., Thatcher, W. W., & Collier, R. J. (1981). Black globe-humidity index (BGHI) as comfort equation for dairy cows. Transactions of the ASAE, 24(3), 711-714. DOI: https://doi.org/10.13031/2013.34325

Burhans, W. S., Burhans, C. R., & Baumgard, L. H. (2022). Invited review: Lethal heat stress: The putative pathophysiology of a deadly disorder in dairy cattle. Journal of Dairy Science, 105(5), 3716-3735. DOI: https://doi.org/10.3168/jds.2021-21080

Esmay, M. L. (1982). Principles of Animal Environment (p. 325). Westport,CT: Avi Pub.

Gabbi, A. M., Mcmanus, C. M., Marques, L. T., Abreu, A. S., Machado, S. C., Zanela, M. B., ... Fischer, V. (2018). Different levels of supplied energy for lactating cows affect physicochemical attributes of milk. Journal of Animal and Feed Sciences, 27, 11-17. DOI: https://doi.org/10.22358/jafs/83703/2018

Garner, J. B., Douglas, M., Williams, S. R. O., Wales, W. J., Marett, L. C., DiGiacomo, K., … Hayes, B. J. (2017). Responses of dairy cows to short-term heat stress in controlled-climate chambers. Animal Production Science, 57(7), 1233-1241. DOI: https://doi.org/10.1071/AN16472

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2021). Malha Municipal. Retrieved from https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?edicao=33087&t=acesso-ao-produto

Instituto Nacional de Meteorologia [INMET]. (2019). Banco de Dados Meteorológicos para Ensino e Pesquisa [BDMEP]. (online). Retrieved from http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187-200. DOI: https://doi.org/10.1007/BF02289233

Крамаренко, О. С., Крамаренко, А. С., Крамаренко, С. С., Крамаренко, С. С., Кузьмічова, Н. І., & Кузьмичёва, Н. И. (2017). Моделювання лактаційних кривих молочних корів за допомогою аналізу головних компонент (PCA). Вісник Аграрної Науки Причорномор'я, 4(96), 115-125.

Lambertz, C., Sanker, C., & Gauly, M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97, 319-329. DOI: https://doi.org/10.3168/jds.2013-7217

Macciotta, N. P. P., Cecchinato, A., Mele, M., & Bittante, G. (2012). Use of multivariate factor analysis to define new indicator variables for milk composition and coagulation properties in Brown Swiss cows. Journal of Dairy Science, 95(12), 7346-7354. DOI: https://doi.org/10.3168/jds.2012-5546

Mele, M., Macciotta, N. P. P., Cecchinato, A., Conte, G., Schiavon, S., & Bittante, G. (2016). Multivariate factor analysis of detailed milk fatty acid profile: Effects of dairy system, feeding, herd, parity, and stage of lactation. Journal of Dairy Science, 99(12), 9820-9833. DOI: https://doi.org/10.3168/jds.2016-11451

Oliveira, C. C. D., Alves, F. V., Martins, P. G. M. D. A., Karvatte Junior, N., Alves, G. F., Almeida, R. G. D., ... Costa e Silva, E. V. D. (2019). Vaginal temperature as indicative of thermoregulatory response in Nellore heifers under different microclimatic conditions. PloS one, 14(10), e0223190. DOI: https://doi.org/10.1371/journal.pone.0223190

Shu, H., Wang, W., Guo, L., & Bindelle, J. (2021). Recent advances on early detection of heat strain in dairy cows using animal-based indicators: a review. Animals, 11(4), 980. DOI: https://doi.org/10.3390/ani11040980

Silva, D. C., & Passini, R. (2018). Assessing different holding pen cooling systems through environmental variables and productivity of lactating cows. Acta Scientiarum. Animal Sciences, 40, e36087. DOI: https://doi.org/10.4025/actascianimsci.v40i1.36087

Silva, M. V., Almeida, G. L. P., Pandorfi, H., Moraes, A. S., Macêdo, G. A. P. A., Batista, P. H. D., ... Guiselini, C. (2021a). Influence of meteorological elements on behavioral responses of gir cows and effects on milk quality. Acta Scientiarum. Animal Sciences, 43, e52604. DOI: https://doi.org/10.4025/actascianimsci.v43i1.52604

Silva, M. V., Cordeiro Junior, J. J. F., Almeida Neto, L. A., Santos, R. B., Pandorfi, H., & Guiselini, C. (2022). Micrometeorological Modification Promoted by Photoselective Meshes and Supplementary Lighting in the Production of Pre-sprouted Sugarcane Seedlings. Sugar Tech, 24, 1894-1912. DOI: https://doi.org/10.1007/s12355-021-01078-z

Silva, M. V., Pandorfi, H., Almeida, G. L. P., Jardim, A. M. R. F., Batista, P. H. D., Silva, R. A. B., ... Moraes, A. S. (2020). Spatial variability and exploratory inference of abiotic factors in barn compost confinement for cattle in the semiarid. Journal of Thermal Biology, 94, 102782. DOI: https://doi.org/10.1016/j.jtherbio.2020.102782

Silva, M. V., Pandorfi, H., Jardim, A. M. R. F., Oliveira-Júnior, J. F., Divincula, J. S., Giongo, P. R., ... Lopes, P. M. O. (2021b). Spatial modeling of rainfall patterns and groundwater on the coast of northeastern Brazil. Urban Climate, 38, 100911. DOI: https://doi.org/10.1016/j.uclim.2021.100911

Sousa, R. V., Silva Rodrigues, A. V., Abreu, M. G., Tabile, R. A., & Martello, L. S. (2018). Predictive model based on artificial neural network for assessing beef cattle thermal stress using weather and physiological variables. Computers and Electronics in Agriculture, 144, 37-43. DOI: https://doi.org/10.1016/j.compag.2017.11.033

Souto, P. L. G., Barbosa, E. A., Martins, E., Martins, V. M. V., Hatamoto-Zervoudakis, L. K., Pimentel, C. M. M., & Ramos, A. F. (2021). Influence of season and external morphology on thermal comfort and physiological responses in bulls from two breeds adapted to a subtropical climate. Revista Brasileira de Saúde e Produção Animal, 22. DOI: https://doi.org/10.1590/S1519-99402122022021

Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57-61. DOI: https://doi.org/10.1080/00431672.1959.9926960

Tresoldi, G., Schütz, K. E., & Tucker, C. B. (2019). Cooling cows with sprinklers: Effects of soaker flow rate and timing on behavioral and physiological responses to heat load and production. Journal of Dairy Science, 102, 528-538. DOI: https://doi.org/10.3168/jds.2018-14962

Warrick, A. W., & Nielsen, D. R. (1980). Spatial variability of soil physical properties in the field. In D. HILLEL (Ed.), Applications of Soil Physics (Cap. 2, 319-344). New York, NY: Academic.

Wildridge, A. M., Thomson, P. C., Garcia, S. C., John, A. J., Jongman, E. C., Clark, C. E., & Kerrisk, K. L. (2018). The effect of temperature-humidity index on milk yield and milking frequency of dairy cows in pasture-based automatic milking systems. Journal of Dairy Science, 101(5), 4479-4482. DOI: https://doi.org/10.3168/jds.2017-13867

Yan, G., Li, H., Zhao, W., & Shi, Z. (2020). Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. International Journal of Biometeorology, 64(12), 2077-2091. DOI: https://doi.org/10.1007/s00484-020-01999-6

Publicado
2023-08-17
Como Citar
Silva, M. V. da, Almeida, G. L. P. de, Pandorfi, H., Moraes, A. S., Macêdo, G. A. P. de A., Oliveira, M. E. G. de, Melo, M. V. N. de, & Santana, T. C. (2023). Thermal comfort and productive responses of 7/8 holstein-gyr cows subjected to cooling system . Acta Scientiarum. Animal Sciences, 45(1), e61295. https://doi.org/10.4025/actascianimsci.v45i1.61295
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus