Multivariate modeling to estimate the composition of carcass tissues of Santa Inês sheep
Resumo
The purpose of this study was to establish a multivariate model using two complementary multivariate statistical techniques: Factor Analysis and Stepwise Multiple Regression, to predict tissue composition through carcass characteristics of Santa Inês sheep. The data was obtained from 82 Santa Inês sheep under confinement. The predictor variables were carcass characteristics related to weight, yield, morphometric measures and meat cuts. The use of latent variables from factor analysis in multiple regression models eliminates the problem of multicollinearity of the explanatory variables, improving the accuracy of interpretation of results by proposing a better fit of the mathematical model. However, the coefficient of determination (R²) values were moderate for muscle proportion and total fat, and low for bone proportion, indicating that more appropriate independent variables should be used to better predict the proportion of tissues in Santa Inês sheep.
Downloads
Referências
Alves, M. F., Lotufo, A. D. P., & Lopes, M. L. M. (2013). Seleção de variáveis stepwise aplicadas em redes neurais artificiais para previsão de demanda de cargas elétricas. Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, 1-6. DOI: https://doi.org/10.5540/03.2013.001.01.0144
Brasil. (2000). Instrução Normativa nº 21, de 31 de Julho de 2000. Aprovar os Regulamentos Técnicos de Identidade e Qualidade de Patê, de Bacon ou Barriga Defumada e de Lombo Suíno. Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento Secretaria de Defesa.
Brown, A., & Williams, D. (1979). Sheep carcass evaluation: measurement of composition using a standardised butchery method (Memorandum, 38). Langford: Agricultural Research Council, Meat Research Council.
Cadavez, V. A. P. (2009). Prediction of lean meat proportion of lamb carcasses. Archiva Zootechnica, 12(4), 46-58.
Cardoso, D. B., Medeiros, G. R., Guim, A., Azevedo, P. S., Suassuna, J. M. A., Lima Júnior, D. M., … Carvalho, F. F. R. (2021). Growth performance, carcass traits and meat quality of lambs fed with increasing levels of spineless cactus. Animal Feed Science and Technology, 272, 114788. DOI: https://doi.org/10.1016/j.anifeedsci.2020.114788
Carrasco, S., Ripoll, G., Panea, B., Álvarez-Rodríguez, J., & Joy, M. (2009). Carcass tissue composition in light lambs: Influence of feeding system and prediction equations. Livestock Science, 126(1-3), 112-121. DOI: https://doi.org/10.1016/j.livsci.2009.06.006
Çelik, Ş., Şengül, T., Söğüt, B., Inci, H., Şengül, A. Y., Kayaokay, A., & Ayaşan, T. (2018). Analysis of variables affecting carcass weight of white Turkeys by regression analysis based on factor analysis scores and ridge regression. Revista Brasileira de Ciencia Avicola, 20(2), 273-280. DOI: https://doi.org/10.1590/1806-9061-2017-0574
Cezar, M. F., & Souza, W. H. (2007). Carcaças ovinas e caprinas: obtenção, avaliação e tipificação. Campina Grande, PB: UFCG.
Daskiran, I., Keskin, S., & Bingol, M. (2017). Usability of the factor analysis scores in multiple linear regression analyses for the prediction of daily milk yield in Norduz Goats. Journal of Agricultural Science and Technology, 19, 1507-1515.
Díaz, M. T., Cañeque, V., Lauzurica, S., Velasco, S., Ruíz de Huidobro, F., & Pérez, C. (2004). Prediction of suckling lamb carcass composition from objective and subjective carcass measurements. Meat Science, 66(4), 895-902. DOI: https://doi.org/10.1016/j.meatsci.2003.08.013
Ekiz, B., Baygul, O., Yalcintan, H., & Ozcan, M. (2020). Comparison of the decision tree, artificial neural network and multiple regression methods for prediction of carcass tissues composition of goat kids. Meat Science, 161, 108011. DOI: https://doi.org/10.1016/j.meatsci.2019.108011
Fernandes, J., Pereira Filho, J., Menezes, D., Caldas, A. C., Cavalcante, I., Oliveira, J., … Bezerra, L. (2021). Carcass and meat quality in lambs receiving natural tannins from Mimosa tenuiflora hay. Small Ruminant Research, 198. DOI: https://doi.org/10.1016/j.smallrumres.2021.106362
Fernandes, M. H. M. R., Resende, K. T., Tedeschi, L. O., Fernandes, J. S., Teixeira, I. A. M. A., Carstens, G. E., & Berchielli, T. T. (2008). Predicting the chemical composition of the body and the carcass of 3/4Boer × 1/4Saanen kids using body components. Small Ruminant Research, 75, 90-98. DOI: https://doi.org/10.1016/j.smallrumres.2007.09.005
Gomes, H. F. B., Gonçalves, H. C., Neto, A. P., Cañizares, G. I. L., Roça, R. O., Marques, R. O., & Oliveira, G. M. (2013). Common factors method to predict the carcass composition tissue in kid goats. Revista Brasileira de Zootecnia, 42(3), 193-203. DOI: https://doi.org/10.1590/S1516-35982013000300007
Hair Jr, J., Black, W., Babin, B., Anderson, R., & Tatham, R. (2009). Análise Multivariada de Dados (6a ed.). Porto Alegre, RS: Bookman. DOI: https://doi.org/0-13-032929-0
Hankins, O. G., & Howe, P. E. (1946). Estinlation of the composition of beef carcasses anel cuts (Technical Bulletin, n. 926). U.S. Department of Agriculture. DOI: https://doi.org/10.22004/ag.econ.169985
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31-36. DOI: https://doi.org/10.1007/ BF02291575
Kazemi, A., Mohamed, A., Shareef, H., & Zayandehroodi, H. (2013). Optimal power quality monitor placement using genetic algorithm and Mallow’s Cp. International Journal of Electrical Power and Energy Systems, 53, 564-575. DOI: https://doi.org/10.1016/j.ijepes.2013.05.026
Lambe, N. R., Navajas, E. A., Bünger, L., Fisher, A. V., Roehe, R., & Simm, G. (2009). Prediction of lamb carcass composition and meat quality using combinations of post-mortem measurements. Meat Science, 81(4), 711-719. DOI: https://doi.org/10.1016/j.meatsci.2008.10.025
Lima Júnior, D. M., Carvalho, F. F. R., Maciel, M. I. S., Urbano, S. A., Oliveira, J. P. F., & Rangel, A. H. D. N. (2017). Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct. Semina:Ciencias Agrarias, 38(5), 3377-3382. DOI: https://doi.org/10.5433/1679-0359.2017v38n5p3377
Macena, E. C. B. da C., Costa, R. G., Sousa, W. H. de, Cartaxo, F. Q., Ribeiro, N. L., Arandas, J. K. G., & Ribeiro, M. N. (2022). Multivariate modelling to estimate carcase characteristics and commercial cuts of Boer goats. The Journal of Agricultural Science, 160(5), 371-379. DOI: https://doi.org/10.1017/S002185962200020X
Mallows, C. L. (2000). Some Comments on C p. Technometrics, 42, 87-94. DOI: https://doi.org/10.1080/00401 706.2000.10485984
Marcondes, M. I., Tedeschi, L. O., Valadares Filho, S. C., & Chizzotti, M. L. (2012). Prediction of physical and chemical body compositions of purebred and crossbred Nellore cattle using the composition of a rib section. Journal of Animal Science, 90(4), 1280-1290. DOI: https://doi.org/10.2527/jas.2011-3839
Miyashiro, R., & Takano, Y. (2015). Subset selection by Mallows’ Cp: A mixed integer programming approach. Expert Systems with Applications, 42, 325-331. DOI: https://doi.org/10.1016/j.eswa.2014.07.056
Önk, K., Sari, M., & Gürcan, İ. S. (2018). Estimation of live weights at the beginning and the end of grazing season in Tuj lambs via scores of factor analysis. Ankara Universitesi Veteriner Fakultesi Dergisi, 65(3), 261-266. DOI: https://doi.org/10.1501/Vetfak_0000002855
Ribeiro, F. R. B., & Tedeschi, L. O. (2012). Using real-time ultrasound and carcass measurements to estimate total internal fat in beef cattle over different breed types and managements. Journal of Animal Science, 90(9), 3259-3265. DOI: https://doi.org/10.2527/jas.2011-4697
Santos, V. A. C., Silvestre, A. M., Azevedo, J. M. T., & Silva, S. R. (2017). Estimation of carcase composition of goat kids from joint dissection and conformation measurements. Italian Journal of Animal Science, 16(4), 659-665. DOI: https://doi.org/10.1080/1828051X.2017.1321472
Senra, L. F. A. de C., Nanci, L. C., Mello, J. C. C. B. S. de, Meza, & L. A. (2007). Estudo sobre métodos de seleção de variáveis em DEA. Pesquisa Operacional, 27(2), 191-207. DOI: https://doi.org/10.1590/S0101-74382007000200001
Tahtali, Y. (2019). Use of factor scores in multiple regression analysis for estimation of body weight by certain body measurements in Romanov Lambs. PeerJ, 7(e7434), 1-11. DOI: https://doi.org/10.7717/peerj. 7434
Tariq, M. M., Eyduran, E., Bajwa, M. A., Waheed, A., Iqbal, F., & Javed, Y. (2012). Prediction of body weight from testicular and morphological characteristics in indigenous mengali sheep of Pakistan using factor analysis scores in multiple linear regression analysis. International Journal of Agriculture and Biology, 14(4), 590-594.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.