Efficiency of ozone compared to commercial sanitizers for hatching eggs from older breeders

  • Leticia Cardoso Souza Universidade Federal do Amazonas
  • Joel Lima da Silva Junior Universidade Federal do Amazonas
  • João Paulo Ferreira Rufino Universidade Federal do Amazonas https://orcid.org/0000-0002-1605-5255
  • Sebastião Corrêa de Nazaré Universidade Federal do Amazonas
  • Marco Antonio de Freitas Mendonça Universidade Federal do Amazonas
Palavras-chave: chicks; incubation; paraformaldehyde; poultry; sanitization.

Resumo

This study aimed to evaluate the potential of ozone as a sanitizer compared to commercial sanitizers for hatching eggs stored in hatching machines using different turning systems. The eggs (n = 120) were distributed in a completely randomized design using a factorial scheme (6x2) where the treatments were constituted by different sanitizers applied (non-treated eggs, Ozone 1.6 mg L-1, Ozone 3.2 mg L-1, Cyphenothrin, UVC, and paraformaldehyde) and two turning systems (vertical and horizontal) with 10 eggs each, with the egg considered as a replicate. Data collected were subjected to the Tukey test at 0.05. We observed a very similar performance in the incubation yield results of the hatching machines with different turning systems, where the hatching percentage of eggs stored in the hatching machine using vertical turning presented better (p < 0.05) results. Comparing ozone to other sanitizers, we observed that paraformaldehyde and UVC provided better (p < 0.05) hatching percentage. However, both ozone concentrations used also presented good hatching percentage results. Chicks from treated eggs, except those from eggs treated with the highest ozone concentration (3.2 mg L-1), were heavier (p < 0.05) at hatch. Chicks from eggs treated with the low concentration of ozone (1.6 mg L-1) presented, in several scenarios, higher (p < 0.05) weight at hatch than chicks from eggs treated with sanitizers commonly used, especially paraformaldehyde and UVC. Conclusively, ozone can be used as a sanitizer to treat eggs from older breeders, presenting potential to replace commonly used sanitizers stored in hatching machines using both vertical and horizontal turning systems.

Downloads

Não há dados estatísticos.

Referências

Araújo, I. C. S., Leandro, N. S. M., Mesquita, M. A., Café, M. B., Mello, H. H. C., & Gonzales, E. (2016). Effect of incubator type and broiler breeder age on hatchability and chick quality. Revista Brasileira de Ciência Avícola, 2(special), 17-26. DOI: http://dx.doi.org/10.1590/1806-9061-2015-0146

Araújo, W. A. G., & Albino, L. F. T. (2011). Incubação comercial. Viçosa, MG: Transworld.

Berrang, M. E., Cox, N. A., Frank, J. E., Burh, R. J., & Bailey, J. S. (2000). Hatching egg sanitization for prevention or reduction of human enteropathogens: a review. The Journal of Applied Poultry Research, 9(2), 279-284. DOI: http://dx.doi.org/10.1093/japr/9.2.279

Boleli, I. C., Morita, V. S., Matos Jr, J. B., Thimotheo, M., & Almeida, V. R. (2016). Poultry egg incubation: integrating and optimizing production efficiency. Brazilian Journal of Poultry Science, 18(spe. 2), 1-16. DOI: http://dx.doi.org/10.1590/1806-9061-2016-0292

Boukouvala, M. C., & Kavallieratos, N. G. (2020). Effect of six insecticides on egg hatching and larval mortality of Trogoderma granarium Everts (Coleoptera: Dermestidae). Insects, 11(5), 263. DOI: http://dx.doi.org/10.3390/insects11050263

Branco, J. R. O., Dallago, B. S. L., & Bernal, F. E. M. (2021). Efficiency of ultraviolet light for disinfection of fertile broiler eggs. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73(5), 1137-1146. DOI: https://doi.org/10.1590/1678-4162-12279

Braun, P. G., Fernandez, N., & Fuhrmann, H. (2011). Investigations on the effect of ozone as a disinfectant of egg surfaces. Ozone: Science & Engineering, 33(5), 374-378. DOI: https://doi.org/10.1080/01919512.2011.589359

Cadirci, S. (2009). Disinfection of hatching eggs by formaldehyde fumigation – a review. Archiv für Geflügelkunde, 73(2), 116-123.

Clímaco, W. L. S., Melo, E. F., Vaz, D. P., Saldanha, M. M., Pinto, M. F. V. S., Fernandes, L. C. C., ... Lara, L. J. C. (2018). Eggshell microbiology and quality of hatching eggs subjected to different sanitizing procedures. Pesquisa Agropecuária Brasileira, 53(10), 1177-1183. DOI: http://dx.doi.org/10.1590/S0100-204X2018001000011

Elibol, O., & Braket, J. (2006). Effect of egg turning angle and frequency during incubation on hatchability and incidence of unhatched broiler embryos with head in the small end of the egg. Poultry Science, 85(8), 1433-1437. DOI: https://doi.org/10.1093/ps/85.8.1433

Francisco, N. S., Garcia, R. G., Caldara, F. R., Paz, I. C. L. A., Borille, R., Souza, K. M. R., ... Seno, L. O. (2012). Idade da matriz e tempo de estocagem dos ovos no desempenho e rendimento de carcaça de frangos de corte. Agrarian, 5(18), 393-401.

Glowacz, M., & Rees, D. (2016). The practicality of using ozone with fruit and vegetables. Journal of the Science of Food and Agriculture, 96(14), 4637-4643. DOI: http://dx.doi.org/10.1002/jsfa.7763

Gonçalves, A. A. (2016). Ozone as a safe and environmentally friendly tool for the seafood industry. Journal of Aquatic Food Product Technology, 25(2), 210-229. DOI: http://dx.doi.org/10.1080/10498850.2013.841785

Gottselig, S. M., Dunn-Horrocks, S. L., Woodring, K. S., Coufal, C. D., & Duong, T. (2016). Advanced oxidation process sanitization of eggshell surfaces. Poultry Science, 95(6), 1356-1362. DOI: https://doi.org/10.3382/ps/pev450

Gradel, K. O., Jørgensen, J. C., Andersen, J. S., & Corry, J. E. L. (2004). Monitoring the efficacy of steam and formaldehyde treatment of naturally Salmonella‐infected layer houses. Journal of Applied Microbiology, 96(3), 613-622. DOI: https://doi.org/10.1111/j.1365-2672.2004.02198.x

Hameed, U., Akram, W., & Anjum, M. S. (2014). Effect of Salmonella on hatchability and fertility in laying hen, an assessment. Veterinaria, 2(2), 20-23.

Karaca, H. (2010). Use of ozone in the citrus industry. Ozone: Science & Engineering, 32(2), 122-129. DOI: https://doi.org/10.1080/01919510903520605

Karaca, H., & Velioglu, Y. S. (2014). Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley. Postharvest Biology and Technology, 88, 46-53. DOI: https://doi.org/10.1016/j.postharvbio.2013.09.003

Keïta, A., Huneau-Salaün, A., Guillot, A., Galliot, P., Tavares, M., & Puterflam, J. (2016). A multi-pronged approach to the search for an alternative to formaldehyde as an egg disinfectant without affecting worker health, hatching, or broiler production parameters. Poultry Science, 95(7), 1609-1616. DOI: https://doi.org/10.3382/ps/pew058

Khadre, M. A., Yousef, A. E., & Kim, J.-G. (2001). Microbiological aspects of ozone applications in food: a review. Journal of Food Science, 66(9), 1242-1252. DOI: https://doi.org/10.1111/j.1365-2621.2001.tb15196.x

Kizerwetter-Świda, M., & Binek, M. (2008). Bacterial microflora of the chicken embryos and newly hatched chicken. Journal of Animal and Feed Sciences, 17(2), 224-232. DOI: https://doi.org/10.22358/jafs/66602/2008

Kusstatscher, P., Cernava, T., Liebminger, S., & Berg, G. (2017). Replacing conventional decontamination of hatching eggs with a natural defense strategy based on antimicrobial, volatile pyrazines. Scientific Reports, 7, 13253. DOI: https://doi.org/10.1038/s41598-017-13579-7

Ladeira, C., Viegas, S., Carolino, E., Gomes, M., Prista, J., Gomes, M. C., & Brito, M. (2012). Exposição ocupacional a formaldeído: avaliação da exposição e efeitos genotóxicos. Saúde & Tecnologia, 7, 18-27.

Leong, X.-Y., Kim, D.-Y., Dang, K., Singham, G. V., Doggett, S. L., & Lee, C.-Y. (2020). Performance of commercial insecticide formulations against different developmental stages of insecticide-resistant tropical bed bugs (Hemiptera: Cimicidae). Journal of Economic Entomology, 113(1), 353-366. DOI: http://dx.doi.org/10.1093/jee/toz266

Logan, M. (2010). Biostatistical design and analysis using R: a practical guide. New Jersey, NJ: John Wiley & Sons Ltd.

Maclean, M., McKenzie, K., Anderson, J. G., Gettinby, G., & MacGregor, S. J. (2014). 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. Journal of Hospital Infection, 88(1), 1-11. DOI: https://doi.org/10.1016/j.jhin.2014.06.004

Mendis, J. C., Tennakoon, T. K., & Jayasinghe, C. D. (2018). Zebrafish embryo toxicity of a binary mixture of pyrethroid insecticides: d-Tetramethrin and Cyphenothrin. Journal of Toxicology, 4182694. DOI: http://dx.doi.org/10.1155/2018/4182694

Miller, F. A., Silva, C. L. M., & Brandão, T. R. S. (2013). A review on ozone-based treatments for fruit and vegetables preservation. Food Engineering Reviews, 5, 77-106. DOI: https://doi.org/10.1007/s12393-013-9064-5

Nakamura, H., Oya, M., Hanamoto, T., & Nagashio, D. (2017). Reviewing the 20 years of operation of ozonation facilities in hanshin water supply authority with respect to water quality improvements. Ozone: Science & Engineering, 39(6), 397-406. DOI: https://doi.org/10.1080/01919512.2017.1352413

Nielsen, G. D., & Wolkoff, P. (2010). Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Archives of Toxicology, 84(6), 423-446. DOI: https://doi.org/10.1007/s00204-010-0549-1

Nogueira, W. C. L., Pena, A. C. S., Souza, C. N., Azevedo, I. L., Faria Filho, D. E., & Almeida, A. C. (2019). Disinfection of fertile eggs of free-range poultry with essential oils. Revista Brasileira de Saúde e Produção Animal, 20, e0822019. DOI: http://dx.doi.org/10.1590/S1519-9940200822019

Nowaczewski, S., Babuszkiewicz, M., & Kaczmrek, S. (2016). Effect of broiler breeders’ age on eggshell temperature, embryo viability and hatchability parameters. Annals of Animal Science, 16(1), 235-243. DOI: https://doi.org/10.1515/aoas-2015-0081

Oliveira, G. S., Santos, V. M., Nascimento, S. T., & Rodrigues, J. C. (2020a). Alternative sanitizers to paraformaldehyde for incubation of fertile eggs. Poultry Science, 99(4), 2001-2006. DOI: https://doi.org/10.1016/j.psj.2019.11.032

Oliveira, G. S., Santos, V. M., Rodrigues, J. C., & Nascimento, S. T. (2020b). Effects of different egg turning frequencies on incubation efficiency parameters. Poultry Science, 99(9), 4417-4420. DOI: https://doi.org/10.1016/j.psj.2020.05.045

Pandiselvam, R., Chandrasekar, V., & Thirupathi, V. (2017). Numerical simulation of ozone concentration profile and flow characteristics in paddy bulks. Pest Management Science, 73(8), 1698-1702. DOI: https://doi.org/10.1002/ps.4516

Pandiselvam, R., Subhashini, S., Priya, E. P. B., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: a promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17-34. DOI: https://doi.org/10.1080/01919512.2018.1490636

Pandiselvam, R., Thirupathi, V., & Anandakumar, S. (2015). Reaction kinetics of ozone gas in paddy grains. Journal of Food Process Engineering, 38(6), 594-600. DOI: https://doi.org/10.1111/jfpe.12189

Ramli, M. B., Lim, H. P., Wahab, M. S., & Zin, M. F. M. (2015). Egg hatching incubator using conveyor rotation system. Procedia Manufacturing, 2, 527-531. DOI: https://doi.org/10.1016/j.promfg.2015.07.091

Rostagno, H. S., Albino, L. F. T., Hannas, M. I., Donzele, J. L., Sakomura, N. K., Perazzo, F. G., ... Brito, C. O. (2017). Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais (4a ed.). Viçosa, MG: UFV.

Rui, B. R., Angrimani, D. S. R., Cruz, L. V., Machado, T. L., & Lopes, H. C. (2011). Principais métodos de desinfecção e desinfetantes utilizados na avicultura: revisão de literatura. Revista Científica Eletrônica de Medicina Veterinária, 9(16), 1-14.

Sgavioli, S., Santos, E. T., Domingues, C. H. P., Quadros, T. C. O., Castiblanco, D. M. C., Andrade-Garcia, G. M., ... Baraldi-Artoni, S. M. (2016). Effect of high incubation temperature on the blood parameters of layer chicks. Brazilian Journal of Poultry Science, 18(spe. 2), 41-47. DOI: http://dx.doi.org/10.1590/1806-9061-2015-0095

Silva, G. F., Pereira, D. F., Salgado, D. D., Ramos, D. D., & Freitas, L. G. (2017). Incubation yield as a function of broiler breeder age. Revista Brasileira de Engenharia de Biossistemas, 11(3), 287-293. DOI: http://dx.doi.org/10.18011/bioeng2017v11n3p287-293

Spickler, J. L., Buhr, R. J., Cox, N. A., Bourassa, D. V., & Rigsby, L. L. (2011). Comparison between rinse and crush-and-rub sampling for aerobic bacteria recovery from broiler hatching eggs after sanitization. Poultry Science, 90(7), 1609-1615. DOI: http://dx.doi.org/10.3382/ps.2010-01305

Tona, K., Onagbesan, O., Bruggeman, V., Mertens, K., & Decuypere, E. (2005). Effects of turning duration during incubation on embryo growth, utilization of albumen, and stress regulation. Poultry Science, 84(2), 315-320. DOI: https://doi.org/10.1093/ps/84.2.315

Wells, J. B., Coufal, C. D., Parker, H. M., & McDaniel, C. D. (2010). Disinfection of eggshells using ultraviolet light and hydrogen peroxide independently and in combination. Poultry Science, 89(11), 2499-2505. DOI: http://dx.doi.org/10.3382/ps.2009-00604

Yadav, B. K., Pokharel, N., Khatiwada, D., Khanal, M., Bajracharya, T., & Dhakal, R. (2021). Design, fabrication, and performance analysis of an automatic horizontal egg incubator. Journal of the Institute of Engineering, 16(1), 77-85. DOI: https://doi.org/10.3126/jie.v16i1.36557

Yüceer, M., Aday, M. S., & Caner, C. (2016). Ozone treatment of shell eggs to preserve functional quality and enhance shelf life during storage. Journal of the Science of Food and Agriculture, 96(8), 2755-2763. DOI: http://dx.doi.org/10.1002/jsfa.7440

Zeweil, H. S., Rizk, R. E., Bekhet, G. M., & Ahmed, M. R. (2015). Comparing the effectiveness of egg disinfectants against bacteria and mitotic indices of developing chick embryos. The Journal of Basic & Applied Zoology, 70, 1-15. DOI: https://doi.org/10.1016/j.jobaz.2014.12.005

Publicado
2024-08-16
Como Citar
Souza , L. C., Silva Junior, J. L. da, Rufino, J. P. F., Nazaré, S. C. de, & Mendonça, M. A. de F. (2024). Efficiency of ozone compared to commercial sanitizers for hatching eggs from older breeders. Acta Scientiarum. Animal Sciences, 46(1), e65262. https://doi.org/10.4025/actascianimsci.v46i1.65262
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus