Feasibility of molasses-fermented banana peel as a protein source in practical diet for hybrid tilapia (Oreochromis spp.): effect on growth and feed efficiency

Palavras-chave: fishmeal replacement; molasses-fermented banana peel; red tilapia; alternative feedstuff.

Resumo

This study aims to increase the utilization of banana peels, a local agricultural by-product, by improving nutrient value and partially reducing the presence of anti-nutritional factors (ANFs) as an alternative ingredient in fish feed. The feasibility of molasses-fermented banana peels (MFBP) as a protein source in a practical diet for hybrid tilapia (Oreochromis spp.) fries was investigated. Five isonitrogenous experimental diets containing 0 (control), 25, 50, 75, and 100% substitution levels of fish meal by MFBP were formulated. Twenty tilapia fries per group with three replicates were fed for eight weeks. The growth performance and feed efficiency values of fish were recorded and evaluated. Fish fed with 0, 25, and 50% MFBP levels showed significantly higher growth parameters, survival rate, and feed utilization efficiency than those fed with 75 and 100% MFBP levels. Although the control diet produced better growth performance and feed utilization efficiency than MFBP-based diets there was no significant difference between fish fed with the control diet and the low MFBP levels (0-50%) diet. Based on the present findings, it could be concluded that the molasses-fermented banana peels (MFBP) could efficiently replace the fishmeal by up to 50% without affecting the growth performance of red tilapia.

Downloads

Não há dados estatísticos.

Referências

Adewumi, A. A. (2018). Evaluation of fermented cassava (Manihot esculenta) peel meal on the growth of Clarias gariepinus. Journal of Bioscience and Biotechnology Discovery, 3(5), 90-98. DOI: https://doi.org/10.31248/JBBD2018.070

Aisyah, A., Gustiningrum, A. S., Agustono, & Al-Arif, M. A. (2021). Substitution of commercial feed with fermented banana peel flour (Musaceaea sp.) and fish meal to feed consumption level, specific growth rate, feed efficiency, fat retention, and energy retention in siam catfish (Pangasius hypophthalmus). IOP Conference Series: Earth and Environmental Science, 679, 012056. DOI: https://doi.org/10.1088/1755-1315/679/1/012056

Association of Official Analytical Chemists [AOAC]. (2000). Official methods of analysis (17th ed.). Gaithersburg, MD: AOAC.

Baruah, K., Sahu, N. P., Pal, A. K., & Debnath, D. (2004). Dietary phytase: an ideal approach for a cost effective and low-polluting aquafeed. NAGA, WorldFish Center Quarterly, 27(3-4), 15-19.

Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies, 6(2), 164-179.

Diógenes, A. F., Basto, A., Estevão-Rodrigues, T. T., Moutinho, S., Aires, T., Oliva-Teles, A., & Peres, H. (2019). Soybean meal replacement by corn distillers dried grains with solubles (DDGS) and exogenous non-starch polysaccharidases supplementation in diets for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 500, 435-442. DOI: https://doi.org/10.1016/j.aquaculture.2018.10.035

El-Sayed, A.-F. M. (2020). Tilapia culture (2nd ed.). Alexandria, EG: Academic Press.

Food and Agriculture Organization [FAO]. (2021). FAO aquaculture news. No. 63. Rome, IT: FAO Fisheries Division.

Sadique, K. J., Pandey, A., Khairnar, S. O., & Bt, N. K. (2018). Effect of molasses-fermented water hyacinth feed on growth and body composition of common carp, Cyprinus carpio. Journal of Entomology and Zoology Studies, 6(4), 1161-1165.

Karaket, T., Seel-audom, M., & Areechon, N. (2021). Analysis and synthesis of knowledge from Nile tilapia philosophers for sustainable culture in the northern Thailand. Journal of Science and Technology, 29(3), 454-468. DOI: https://doi.org/10.14456/tstj.2021.39

Karaket, T., Somtua, C., Ponza, P., & Areechon, N. (2021). Potential benefits of ripe cultivated banana (Musa sapientum Linn.) in practical diet on growth performance, feed utilization and disease resistance of hybrid tilapia (Oreochromis niloticus x O. mossambicus). Turkish Journal of Fisheries and Aquatic Sciences, 21(10), 501-508. DOI: https://doi.org/10.4194/1303-2712-v21_10_03

Kraithong, S., & Issara, U. (2021). A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. Journal of the Saudi Society of Agricultural Sciences, 20(8), 530-543. DOI: https://doi.org/10.1016/j.jssas.2021.06.004

Likittrakulwong, W., Chanburee, S., Kitpot, T., Ninjiaranai, P., & Pongpamorn, P. (2023). Phytochemical properties, in vitro antimicrobial, and bioactive compounds of banana peel extractions using GC-MS. Natural and Life Sciences Communications, 22(2), e2023021. DOI: https://doi.org/10.12982/NLSC.2023.021

Lupatsch, I., Kissil, G. W., Sklan, D., & Pfeffer, E. (1997). Apparent digestibility coefficients of feed ingredients and their predictability in compound diets for gilthead seabream, Sparus aurata L. Aquaculture Nutrition, 3(2), 81-89. DOI: https://doi.org/10.1046/j.1365-2095.1997.00076.x

Minjarez-Osorio, C., Castillo-Alvarado, S., Gatlin III, D. M., González-Félix, M. L., Perez-Velazquez, M., & Rossi Jr., W. (2016). Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): a comparative study. Aquaculture, 453, 122-129. DOI: https://doi.org/10.1016/j.aquaculture.2015.11.042

Mandal, S., & Ghosh, K. (2020). Effect of different processing techniques on nutrient and anti-nutrient compositions of plant feedstuffs for their probable use as aqua-feed ingredients. Journal of the Inland Fisheries Society of India, 52(2), 173-182. DOI: https://doi.org/10.47780/jifsi.52.2.2020.109943

Molina-Poveda, C. (2016). Nutrient requirements. In Nates, S. F. (Ed.), Aquafeed formulation (p. 75-216). Amsterdam, London: Academic Press.

Naksing, T., Teeka, J., Rattanavichai, W., Pongthai, P., Kaewpa, D., & Areesirisuk, A. (2021). Determination of bioactive compounds, antimicrobial activity, and the phytochemistry of the organic banana peel in Thailand. Bioscience Journal, 37, e37024. DOI: https://doi.org/10.14393/BJ-v37n0a2021-56306

Novriadi, R., Rhodes, M., Powell, M., Hanson, T., & Davis, D. A. (2018). Effects of soybean meal replacement with fermented soybean meal on growth, serum biochemistry and morphological condition of liver and distal intestine of Florida pompano Trachinotus carolinus. Aquaculture Nutrition, 24(3), 1066-1075. DOI: https://doi.org/10.1111/anu.12645

Oguntoyinbo, O. O., Olumurewa, J. A. V., & Omoba, O. S. (2020). Chemical composition, dietary fiber and antioxidant activity of fermented ripe banana peel flour. Journal of Food Stability, 3(2), 27-42. DOI: https://doi.org/10.36400/J.Food.Stab.3.2.2020-0034

Olorunnisola, K. S., Jamal, P., & Alam, M. Z. (2018). Protein improvement of banana peel through sequential solid state fermentation using mixed-culture of Phanerochaete chrysosporium and Candida utilis. 3 Biotech, 8(10), 416. DOI: https://doi.org/10.1007/s13205-018-1435-4

Ozabor, P. T., Ojokoh, A. O., Wahab, A. A., & Aramide, O. O. (2020). Effect of fermentation on the proximate and antinutrient composition of banana peels. The International Journal of Biotechnology, 9(2), 105-117. DOI: https://doi.org/10.18488/journal.57.2020.92.105.117

Pereira, A., & Maraschin, M. (2015). Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology, 160, 149-163. DOI: https://doi.org/10.1016/j.jep.2014.11.008

Phulia, V., Sardar, P., Sahu, N. P., Shamna, N., Fawole, F. J., Gupta, S., & Gadhave, P. D. (2017). Replacement of soybean meal with fermented jatropha curcas kernel meal in the diet of Labeo rohita fingerlings: effect on hemato‐biochemical and histopathological parameters. Journal of the World Aquaculture Society, 48(4), 537-683. DOI: https://doi.org/10.1111/jwas.12379

Pimentel, P. R. S., Rocha Júnior, V. R., Melo, M. T. P., Ramos, J. C. P., Cardoso, L. G., & Silva, J. J. P. (2016). Feeding behavior of F1 Holstein x Zebu lactating cows fed increasing levels of banana peel. Acta Scientiarum. Animal Sciences, 38(4), 431-437. DOI: https://doi.org/10.4025/actascianimsci.v38i4.32266

Pinto, L. G. Q., Pezzato, L. E., Miranda, E. C., Barros, M. M., & Furuya, W. M. (2008). Efeito do tanino na digestibilidade dos nutrientes da raçãopela tilápia do Nilo, Oreochromis niloticus. Acta Scientiarum-Animal Sciences, 26(2), 181-186. DOI: https://doi.org/10.4025/actascianimsci.v26i2.1863

Pratiwi, D. Y., & Pratiwy, F. M. (2021). Effect of fermented water hyacinth (Eichhornia crassipes) on growth performance of fish. International Journal of Fisheries and Aquatic Studies, 9(4), 139-141. DOI: https://doi.org/10.22271/fish.2021.v9.i4b.2533

R Core Team. (2019). R: a language and environment for statistical computing. Vienna, AT: R Foundation for Statistical Computing.

Rahmad, F. A., Suharman, I., & Adelina (2017). Effect of fermented water hyacinth (Eichhornia crassipes) meal using a cow rumen fluid in diets on growth of river carp (Leptobarbus Hoevenii) fingerling. Jurnal Online Mahasiswa, 4(1), 1-14.

Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15. DOI: https://doi.org/10.1186/s40643-017-0187-z

Salim, A., Chacko, B., Murugan, S. S., Bunglavan, S. J., Ranjith, D., Sunanda, C., … Ouseph, N. (2021). Raw banana peel silage–an alternative livestock feed. Indian Journal of Pure & Applied Bioscience, 9(2), 84-88. DOI: http://dx.doi.org/10.18782/2582-2845.8607

Silva, A. F., Copatti, C. E., Oliveira, E. P., Bonfá, H. C., Melo, F. V. S. T., Camargo, A. C. S., & Melo, J. F. B. (2020). Effects of whole banana meal inclusion as replacement for corn meal on digestibility, growth performance, haematological and biochemical variables in practical diets for tambaqui juveniles (Colossoma macropomum). Aquaculture Reports, 17, 100307. DOI: https://doi.org/10.1016/j.aqrep.2020.100307

Wadhwa, M., Bakshi, M. P., & Makkar, H. P. (2015). Waste to worth: fruit wastes and by-products as animal feed. CABI Reviews, 10(31), 1-26. DOI: https://doi.org/10.1079/PAVSNNR201510031

Yossa, R., Fatan, N. A., Kumari, J., & Schrama, J. W. (2022). Apparent digestibility coefficients of banana peel, cassava peel, cocoa husk, copra waste, and sugarcane bagasse in the GIFT strain of Nile tilapia (Oreochromis niloticus). Journal of Applied Aquaculture, 34(3), 734-754. DOI: https://doi.org/10.1080/10454438.2021.1890304

Zaini, H. M., Roslan, J., Saallah, S., Munsu, E., Sulaiman, N. S., & Pindi, W. (2022). Banana peels as a bioactive ingredient and its potential application in the food industry. Journal of Functional Foods, 92, 105054. DOI: https://doi.org/10.1016/j.jff.2022.105054

Zhuo, L.-C., Chen, C.-F., & Lin, Y.-H. (2021). Dietary supplementation of fermented lemon peel enhances lysozyme activity and susceptibility to Photobacterium damselae for orange-spotted grouper, Epinephelus coioides. Fish & Shellfish Immunology, 117, 248-252. DOI: https://doi.org/10.1016/j.fsi.2021.08.015

Publicado
2024-04-04
Como Citar
Intharathat, B., Ponza, P., & Karaket, T. (2024). Feasibility of molasses-fermented banana peel as a protein source in practical diet for hybrid tilapia (Oreochromis spp.): effect on growth and feed efficiency. Acta Scientiarum. Animal Sciences, 46(1), e68154. https://doi.org/10.4025/actascianimsci.v46i1.68154
Seção
Aquicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus