Growth performance and intestinal histology of juvenile pirarucu fed with increasing levels of soybean meal

  • Giovanni Vitti Moro Empresa Brasileira de Pesquisa Agropeucária https://orcid.org/0000-0002-5219-4287
  • Ana Paula Oeda Rodrigues Empresa Brasileira de Pesquisa Agropeucária
  • Caniggia Lacerda Andrade Agrofish Consultoria
  • Fernanda Gomes de Paula Universidade Federal de Goiás
  • Marcos Barcelos Café Universidade Federal de Goiás
Palavras-chave: nutrition; vegetable protein; fish meal; enteritis; histomorphometry.

Resumo

The aim of this study was to evaluate the inclusion of different levels of soybean meal in pirarucu’s diet. 200 pirarucu juveniles (152.15 ± 0.8 g) were distributed in 20 polyethylene tanks with a continuous water flow system. A completely randomized experimental design was used, with five treatments (n = 4) containing 0, 10, 20, 30 and 40% of soybean meal inclusion levels. Growth performance was measured as specific growth rate, feed conversion, weight gain and survival. Body composition, protein retention rate and histopathological changes in the intestine were analyzed. The different treatments did not affect weight gain, specific growth rate and survival. The body composition of the fish was affected by treatments for ash and ether extract and the IHS was also affected. The diet with 40% soybean meal compromised feed conversion rate. Additionally, the distal intestine of fish fed with the same diet showed a reduction in the height of mucosal folds and a loss of supranuclear vacuolation in enterocytes. Based on these results, the inclusion of up to 30% of soybean meal in the diet of juvenile pirarucu is possible without negative effects on performance and enteric morphology.

Downloads

Não há dados estatísticos.

Referências

Association of Official Analytical Chemists [AOAC]. (1999). Official methods of analysis (16th ed.). Washington, DC: AOAC.

Baeverfjord, G., & Krogdahl, A. (1996). Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. Journal of Fish Diseases, 19(5), 375-387. DOI: https://doi.org/10.1046/j.1365-2761.1996.d01-92.x

Buddington, R. K., Krogdahl, Å., & Bakke-Mckellep, A. M. (1997). The intestines of carnivorous fish: structure and functions and the relations with diet. Acta Physiologica Scandinavica, 638, 67-80.

Cerdeira, K. A., Souza, K. J. N. S., Ferreira, J. B., Zampar, A., Ono, E. A., & Affonso, E. G. (2018). Soybean meal in diets for juveniles of pirarucu. Boletim do Instituto de Pesca, 44(3), e318. DOI: https://doi.org/10.20950/1678-2305.2018.318

Cipriano, F. S., Lima, K. S., Souza, R. H. B., Tonini, W. C. T., Passinato, É. B., & Braga, L. G. T. (2016). Digestibility of animal and vegetable protein ingredients by pirarucu juveniles, Arapaima gigas. Revista Brasileira de Zootecnia, 45(10), 581-586. DOI: https://doi.org/10.1590/S1806-92902016001000001

Corrêa, R. O., Lisboa, V., Oliveira, R. S., Aires, L. N. A., Silva, R. S., Queiroz, C. A., & Sousa, T. M. (2022). Substituição da farinha de peixe por farelo de soja em dietas para pirarucu. Belém, PA: Embrapa Amazônia Oriental.

Elangovan, A., & Shim, K. F. (2000). The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture, 189(1-2), 133-144. DOI: https://doi.org/10.1016/S0044-8486(00)00365-3

Fuentes-Quesada, J. P., Viana, M. T., Rombenso, A. N., Guerrero-Rentería, Y., Nomura-Solís, M., Gomez-Calle, V., … Mata-Sotres, J. A. (2018). Enteritis induction by soybean meal in Totoaba macdonaldi diets: Effects on growth performance, digestive capacity, immune response and distal intestine integrity. Aquaculture, 495, 78-89. DOI: https://doi.org/10.1016/j.aquaculture.2018.05.025

Glencross, B., Fracalossi, D. M., Hua, K., Izquierdo, M., Mai, K., Øverland, M., … Yakupityage, A. (2023). Harvesting the benefits of nutritional research to address global challenges in the 21st century. Journal of the World Aquaculture Society, 54(2), 343-363. DOI: https://doi.org/10.1111/jwas.12948

Gu, M., Bai, N., Zhang, Y., & Krogdahl, Å. (2016). Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture, 464, 286-295. DOI: https://doi.org/10.1016/j.aquaculture.2016.06.035

Hernández, M. D., Martínez, F. J., Jover, M., & García, B. (2007). Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture, 263(1-4), 159-167. DOI: https://doi.org/10.1016/j.aquaculture.2006.07.040

Hien, T. T. T., Be, T. T., Lee, C. M., & Bengtson, D. A. (2015). Development of formulated diets for snakehead (Channa striata and Channa micropeltes): can phytase and taurine supplementation increase use of soybean meal to replace fish meal? Aquaculture, 448, 334-340. DOI: https://doi.org/10.1016/j.aquaculture.2015.06.020

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2021). Pesquisa da pecuária municipal. Recuperado de http://www.sidra.ibge.gov.br/

Krogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2000). Feeding atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquaculture Nutrition, 6(2), 77-84. DOI: https://doi.org/10.1046/j.1365-2095.2000.00129.x

Krogdahl, Å., Bakke-McKellep, A. M., & Baeverfjord, G. (2003). Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 9(6), 361-371. DOI: https://doi.org/10.1046/j.1365-2095.2003.00264.x

Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture Research, 41(3), 333-344. DOI: https://doi.org/10.1111/j.1365-2109.2009.02426.x

Kumar, S., Sándor Zs, J., Nagy, Z., Fazekas, G., Havasi, M., Sinha, A. K., De Boeck, G., & Gál, D. (2017). Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (Silurus glanis): growth response and liver gene expression. Aquaculture Nutrition, 23(5), 1179-1189. DOI: https://doi.org/10.1111/anu.12487

Lanari, D., D’Agaro, E., & Turri, C. (1998). Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 161(1-4), 345-356. DOI: https://doi.org/10.1016/S0044-8486(97)00282-2

Lima, A. F., Rodrigues, A. P. O., Lima, L. K. F., Maciel, P. O., Rezende, F. P., Freitas, L. E. L., … Bezerra, T. A. (2017). Alevinagem, recria e engorda de pirarucu. Brasília, DF: Embrapa.

Mattos, B. O., Nascimento Filho, E. C. T., Santos, A. A., Barreto, K. A., Sánchez-Vázquez, F. J., & Fortes-Silva, R. (2017). A new approach to feed frequency studies and protein intake regulation in juvenile pirarucu. Anais da Academia Brasileira de Ciências, 89(2), 1243-1250. DOI: https://doi.org/10.1590/0001-3765201720160349

Molina-Poveda, C. (2016). Nutrient requirements. In S. F. Nates (Ed.), Aquafeed formulation (p. 75-216). San Diego, CA: Academic Press.

National Research Council [NRC]. (2011). Nutrient requirements of fish and shrimp. Washington, DC: NRC.

Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., … Troell, M. (2021). Publisher correction: a 20-year retrospective review of global aquaculture. Nature, 595, E36. DOI: https://doi.org/10.1038/s41586-021-03736-4

Ono, E. A., Halverson, M. R., & Kubitza, F. (2004). Pirarucu - o gigante esquecido. Panorama da Aqüicultura, 14(81), 14-25.

Ostaszewska, T., Dabrowski, K., Palacios, M. E., Olejniczak, M., & Wieczorek, M. (2005). Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture, 245(1-4), 273-286. DOI: https://doi.org/10.1016/j.aquaculture.2004.12.005

Pereira-Filho, M., & Roubach, R. (2018). Pirarucu (Arapaima gigas). In B. Baldisserotto, & L. C. Gomes (Orgs.), Espécies nativas para piscicultura no Brasil (p. 37-66; 2 ed., rev. e ampl.). Santa Maria, RS: UFSM.

Pino-Hernández, E., Costa, W. A., Araujo, E. A. F., Villa, P. M., Lourenço, L. F. H., & Carvalho Junior, R. (2021). Influence of grilling pretreatment and optimization of sous vide processing parameters on the physicochemical and microbiological quality of pirarucu fillet. Food Science and Technology International, 27(1), 84-96. DOI: https://doi.org/10.1177/1082013220934257

Ramos, A. M. J., Fracalossi, D. M., Freitas, L. E. L., Santos, V. R. V., & Rodrigues, A. P. O. (2022b). Optimizing methodological aspects of stool collection by sedimentation in digestibility studies with pirarucu (Arapaima gigas). Aquaculture Research, 53(4), 1456-1467. DOI: https://doi.org/10.1111/are.15680

Ramos, A. M. J., Rodrigues, A. P. O., Freitas, L. E. L., Santos, V. R. V., Mattioni, B., & Fracalossi, D. M. (2022a). Starchy plant ingredients in pirarucu (Arapaima gigas) feeds: Utilization potential based on apparent digestibility and starch microstructure. Aquaculture Research, 53(11), 4128-4140. DOI: https://doi.org/10.1111/are.15914

Rawles, S. D., Fuller, A., Green, B. W., Abernathy, J. W., Straus, D. L., Deshotel, M. B., … Webster, C. D. (2022). Growth, body composition, and survival of juvenile white bass (Morone chrysops) when dietary fish meal is partially or totally replaced by soybean meal, poultry by-product meal, an all-plant protein blend or a commercial plant-animal protein blend. Aquaculture Reports, 26, 101307. DOI: https://doi.org/10.1016/j.aqrep.2022.101307

Refstie, S., Korsøen, Ø. J., Storebakken, T., Baeverfjord, G., Lein, I., & Roem, A. J. (2000). Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture, 190(1-2), 49-63. DOI: https://doi.org/10.1016/S0044-8486(00)00382-3

Rodrigues, A. P. O., Bicudo, Á. J. A., Moro, G. V., Gominho-Rosa, M. C., & Gubiani, É. A. (2022b). Muscle amino acid profile of wild and farmed pirarucu (Arapaima gigas) in two size classes and an estimation of their dietary essential amino acid requirements. Journal of Applied Aquaculture, 34(2), 441-455. DOI: https://doi.org/10.1080/10454438.2020.1866141

Rodrigues, A. P. O., Moro, G. V., Santos, V. R. V., Freitas, L. E. L., & Fracalossi, D. M. (2019). Apparent digestibility coefficients of selected protein ingredients for pirarucu Arapaima gigas (Teleostei: Osteoglossidae). Latin American Journal of Aquatic Research, 47(2), 310-317. DOI: https://doi.org/10.3856/vol47-issue2-fulltext-11

Rodrigues, A. P. O., Ramos, A. M. J., Fracalossi, D. M., Moro, G. V., Freitas, L. E. L., & Santos, V. R. V. (2022a). Ingredientes para a formulação de rações para o pirarucu (Arapaima gigas): tabelas de digestibilidade. Palmas, TO: Embrapa Pesca e Aquicultura.

Rodrigues, R. A., Saturnino, K. C., & Fernandes, C. E. (2017). Liver histology and histomorphometry in hybrid sorubim (Pseudoplatystoma reticulatum × Pseudoplatystoma corruscans) reared on intensive fish farming. Aquaculture Research, 48(9), 5083-5093. DOI: https://doi.org/10.1111/are.13325

Storebakken, T., Shearer, K. D., & Roem, A. J. (1998). Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture, 161(1-4), 365-379. DOI: https://doi.org/10.1016/S0044-8486(97)00284-6

Tomás, A., De La Gándara, F., Garcáa-Gomez, A., Párez, L., & Jover, M. (2005). Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, Seriola dumerili. Aquaculture Nutrition, 11(5), 333-340. DOI: https://doi.org/10.1111/j.1365-2095.2005.00365.x

Wang, Y.-R., Wang, L., Zhang, C.-X., & Song, K. (2017). Effects of substituting fishmeal with soybean meal on growth performance and intestinal morphology in orange-spotted grouper (Epinephelus coioides). Aquaculture Reports, 5, 52-57. DOI: https://doi.org/10.1016/j.aqrep.2016.12.005

Zhang, C., Rahimnejad, S., Wang, Y.-R., Lu, K., Song, K., Wang, L., & Mai, K. (2018). Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483, 173-182. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.029

Zhao, X., Wang, Y., Wang, X., & Ye, J. (2021). Growth performance, plasma components, and intestinal barrier in grouper (Epinephelus coioides) are altered by dietary fish meal replacement with extruded soybean meal. Aquaculture Reports, 21, 100863. DOI: https://doi.org/10.1016/j.aqrep.2021.100863

Zhou, Z., Ringø, E., Olsen, R. E., & Song, S. K. (2018). Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquaculture Nutrition, 24(1), 644-665. DOI: https://doi.org/10.1111/anu.12532

Publicado
2024-04-04
Como Citar
Moro, G. V., Rodrigues, A. P. O., Andrade, C. L., Paula, F. G. de, & Café, M. B. (2024). Growth performance and intestinal histology of juvenile pirarucu fed with increasing levels of soybean meal. Acta Scientiarum. Animal Sciences, 46(1), e68613. https://doi.org/10.4025/actascianimsci.v46i1.68613
Seção
Aquicultura

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus