Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments
Resumo
Several authors have developed equations to estimate methane (CH4) emissions by cattle according to variables such as dry matter and nutrient intake, live weight, or weight gain. Mathematical models using these variables show a large variability of results, being necessary to identify those which provide more precise and accurate predictions. For this reason, the objective of this study was to validate enteric CH4 emissions estimated from mathematical models through a comparison with a database of CH4 emissions obtained from cattle experiments carried out in tropical regions. A database of 495 individual cattle CH4 emissions data (g day-1) obtained from 19 studies in three tropical Latin American countries was built for this study. Results showed that mathematical models developed for cattle in tropical production systems overestimated CH4 emissions when they were compared with our database. The mathematical model with higher precision and accuracy was the one that included dry matter intake and organic matter digestibility in the equation (Equation 7. R2=0.34, Cb=0.94, CCC=0.55, RMSE=60.8%, r=0.58), followed by models that included neutral detergent fiber intake data (Equation 5). Our data did not show a relationship between CH4 emissions and gross energy intake or live weight.
Downloads
Referências
Arceo-Castillo, J. I., Vázquez, A. T. P., Solís, J. R. C., Gamboa, J. A. A., Owen, P. Q., Vera, J. C. K. (2017). Evaluación de las cámaras respirométricas con bovinos alimentados con pastos tropicales para la producción de metano entérico. Revista Colombiana Ciencias Pecuarias, 30(Supl), 137-138.
Benaouda, M., González-Ronquillo, M., Appuhamy, J. A. D. R. N., Kebreab, E., Molina, L. T., Herrera-Camacho, J., ... Castelán-Ortega, O. A. (2020). Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livestock Science, 241, 104177. DOI: https://doi.org/10.1016/j.livsci.2020.104177
Bibby, J., & Toutenburg, H. (1977). Prediction and improved estimation in linear models. Chichester, GB: John Wiley.
Charmley, E., Williams, S. R. O., Moate, P. J., Hegarty, R. S., Herd, R. M., Oddy, V. H., … Hannah, M. C. (2016). A universal equation to predict methane production of forage-fed cattle in Australia. Animal Production Science, 56(3), 169-180. DOI: https://doi.org/10.1071/AN15365
Congio, G. F. S., Bannink, A., Mayorga, O. L., Rodrigues, J. P. P., Bougouin, A., Kebreab, E., ... Hristov, A. N. (2023). Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Science of The Total Environment, 856(Part 2), 159128. DOI: https://doi.org/10.1016/j.scitotenv.2022.159128
Congio, G. F. S., Bannink, A., Mogollón, O. L. M., Jaurena, G., Gonda, H., Gere, J. I., ... Hristov, A. N. (2021). Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 312, 127693. DOI: https://doi.org/10.1016/j.jclepro.2021.127693
Cottle, D. J., & Eckard, R. J. (2018). Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Animal Production Science, 58(12), 2167-2177. DOI: https://doi.org/10.1071/AN17832
Díaz-Céspedes, M., Hernández-Guevara, J. E., & Gómez, C. (2021). Enteric methane emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Tropical Animal Health and Production, 53(4), 421. DOI: https://doi.org/10.1007/s11250-021-02871-4
Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal Dairy Science, 90(7), 3456-3466. DOI: https://doi.org/10.3168/jds.2006-675
Eugène, M., Sauvant, D., Nozière, P., Viallard, D., Oueslati, K., Lherm, M., … Doreau, M. (2019). A new Tier 3 method to calculate methane emission inventory for ruminants. Journal of Environmental Management, 231, 982-988. DOI: https://doi.org/10.1016/j.jenvman.2018.10.086
Gaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R., & Arango, J. (2020). Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel cayman grass and its associations with two Leucaena shrub legumes. Frontiers in Veterinary Science, 7. DOI: https://doi.org/10.3389/fvets.2020.579189
Hales, K. E., Coppin, C. A., Smith, Z. K., McDaniel, Z. S., Tedeschi, L. O., Cole, N. A., & Galyean, M. L. (2022). Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. Journal of Animal Science, 100(3), skac013. DOI: https://doi.org/10.1093/jas/skac013
Hammond, K. J., Crompton, L. A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D. R., O’Kiely, P., … Reynolds, C. K. (2016). Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13-30. DOI: https://doi.org/10.1016/j.anifeedsci.2016.05.018
Hegarty, R. S. (2004). Genotype differences and their impact on digestive tract function of ruminants: a review. Australian Journal of Experimental Agriculture, 44(5), 459-467. DOI: https://doi.org/10.1071/EA02148
Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. DOI: https://doi.org/10.3168/jds.2017-13536
Intergovernmental Panel on Climate Change [IPCC]. (1997). IPCC guidelines for national greenhouse gas inventories. Bracknell, UK: IPCC/OECD/IEA.
Intergovernmental Panel on Climate Change [IPCC]. (2006). 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4). Kanagawa, JP: IPCC.
Intergovernmental Panel on Climate Change [IPCC]. (2019). Chapter 4: forest land. In D. Blain, F. Agus, M. A. Alfaro, & H. Vreuls (Eds.), 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories: agriculture, forestry and other land use (Vol. 4, p. 68). Kanagawa, JP: IPCC.
Jiménez-Ocampo, R., Montoya-Flores, M. D., Herrera-Torres, E., Pámanes-Carrasco, G., Arceo-Castillo, J. I., Valencia-Salazar, S. S., ... Ku-Vera, J. C. (2021). Effect of chitosan and naringin on enteric methane emissions in crossbred heifers fed tropical grass. Animals, 11(6), 1599. DOI: https://doi.org/10.3390/ani11061599
Jiménez-Ocampo, R., Montoya-Flores, M. D., Pamanes-Carrasco, G., Herrera-Torres, E., Arango, J., Estarrón-Espinosa, M., ... Ku-Vera, J. C. (2022). Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Frontiers in Veterinary Science, 9, 863910. DOI: https://doi.org/10.3389/fvets.2022.863910
Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. DOI: https://doi.org/10.2527/1995.7382483x
Kaewpila, C., & Sommart, K. (2016). Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecology and Evolution, 6(20), 7422-7432. DOI: https://doi.org/10.1002/ece3.2500
Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle. Journal of Animal Science, 86(10), 2738-2748. DOI: https://doi.org/10.2527/jas.2008-0960
Ku-Vera, J. C., Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Arroyave-Jaramillo, J., Montoya-Flores, M. D., … Solorio-Sánchez, F. J. (2018). Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and Forest Meteorology, 258, 3-7. DOI: https://doi.org/10.1016/j.agrformet.2018.01.008
Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-68. PMID 2720055
Molina-Botero, I. C., Angarita, E. A., Mayorga, O. L., Chará, J., & Barahona-Rosales, R. (2016). Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science, 185, 24-29. DOI: https://doi.org/10.1016/j.livsci.2016.01.009
Molina-Botero, I. C., Arroyave-Jaramillo, J., Valencia-Salazar, S., Barahona-Rosales, R., Aguilar-Pérez, C. F., Burgos, A. A., … Ku-Vera, J. C. (2019a). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technology, 251, 1-11 DOI: https://doi.org/10.1016/j.anifeedsci.2019.01.011
Molina-Botero, I. C., Donney’s, G., Montoya, S., Rivera, J. E., Villegas, G., Chará, J., & Barahona, R. (2015). La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development, 27(5).
Molina-Botero, I. C., Montoya-Flores, M. D., Zavala-Escalante, L. M., Barahona-Rosales, R., Arango, J., & Ku-Vera, J. C. (2019b). Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. Journal of Animal Science, 97(4), 1619-1633. DOI: https://doi.org/10.1093/jas/skz067
Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Romano-Muñoz, J. L., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2020). Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals, 10(2), 300. DOI: https://doi.org/10.3390/ani10020300
Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P., & Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology, 20(7), 2140-2148. DOI: https://doi.org/10.1111/gcb.12471
Muñoz-Tamayo, R., Ruiz, B., Blavy, P., Giger-Reverdin, S., Sauvant, D., Williams, S. R. O., & Moate, P. J. (2022). Predicting the dynamics of enteric methane emissions based on intake kinetic patterns in dairy cows fed diets containing either wheat or corn. Animal - Open Space, 1(1), 100003. DOI: https://doi.org/10.1016/j.anopes.2021.100003
Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., ... Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. DOI: https://doi.org/10.1111/gcb.14094
Patra, A. K. (2017). Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and Adaptation Strategies for Global Change, 22(4), 629-650. DOI: https://doi.org/10.1007/s11027-015-9691-7
Pires Sobrinho, T. L., Branco, R. H., Magnani, E., Berndt, A., Canesin, R. C., & Mercadante, M. E. Z. (2019). Development and evaluation of prediction equations for methane emission from Nellore cattle. Acta Scientiarum. Animal Sciences, 41, 42559. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42559
Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. DOI: https://doi.org/10.3168/jds.2012-6095
Ribeiro, R. S., Rodrigues, J. P. P., Maurício, R. M., Borges, A. L. C. C., Silva, R. R., Berchielli, T. T., ... Pereira, L. G. R. (2020). Predicting enteric methane production from cattle in the tropics. Animal, 14(Suppl. 3), s438-s452. DOI: https://doi.org/10.1017/S1751731120001743
Sauvant, D., & Nozière, P. (2016). Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems. Animal, 10(5), 755-770. DOI: https://doi.org/10.1017/S1751731115002670
Storlien, T. M., Volden, H., Almøy, T., Beauchemin, K. A., McAllister, T. A., & Harstad, O. M. (2014). Prediction of enteric methane production from dairy cows. Acta Agriculturae Scandinavica, Section A — Animal Science, 64(2), 98-109. DOI: https://doi.org/10.1080/09064702.2014.959553
Suzuki, T., Sommart, K., Angthong, W., Nguyen, T. V., Chaokaur, A., Nitipot, P., ... Kawashima, T. (2018). Prediction of enteric methane emission from beef cattle in Southeast Asia. Animal Science Journal, 89(9), 1287-1295. DOI: https://doi.org/10.1111/asj.13058
Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3), 225-247. DOI: https://doi.org/10.1016/j.agsy.2005.11.004
Tedeschi, L. O., Abdalla, A. L., Álvarez, C., Anuga, S. W., Arango, J., Beauchemin, K. A., ... Kebreab, E. (2022). Quantification of methane emitted by ruminants: a review of methods. Journal of Animal Science, 100(7), skac197. DOI: https://doi.org/10.1093/jas/skac197
Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Lazos-Balbuena, F. J., Uuh-Narváez, J. J., Segura-Campos, M. R., … Ku-Vera, J. C. (2018). Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology, 258, 108-116. DOI: https://doi.org/10.1016/j.agrformet.2017.12.262
Van Lingen, H. , Niu, M., Kebreab, E., Valadares Filho, S., Rooke, J. A., Duthie, C.-A., ... Hristov, A. N. (2019). Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agriculture, Ecosystems and Environment, 283, 106575. DOI: https://doi.org/10.1016/j.agee.2019.106575
Yan, T., Agnew, R. E., Gordon, F. J., & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, 64(2-3), 253-263. DOI: https://doi.org/10.1016/S0301-6226(99)00145-1
Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. DOI: https://doi.org/10.1017/S175173110900473X
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.
Funding data
-
Agencia Nacional de Investigación e Innovación
Grant numbers 21-CLIMAT-09