Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments

Palavras-chave: greenhouse gases; modeling; tropical livestock.

Resumo

Several authors have developed equations to estimate methane (CH4) emissions by cattle according to variables such as dry matter and nutrient intake, live weight, or weight gain. Mathematical models using these variables show a large variability of results, being necessary to identify those which provide more precise and accurate predictions. For this reason, the objective of this study was to validate enteric CH4 emissions estimated from mathematical models through a comparison with a database of CH4 emissions obtained from cattle experiments carried out in tropical regions. A database of 495 individual cattle CH4 emissions data (g day-1) obtained from 19 studies in three tropical Latin American countries was built for this study. Results showed that mathematical models developed for cattle in tropical production systems overestimated CH4 emissions when they were compared with our database. The mathematical model with higher precision and accuracy was the one that included dry matter intake and organic matter digestibility in the equation (Equation 7. R2=0.34, Cb=0.94, CCC=0.55, RMSE=60.8%, r=0.58), followed by models that included neutral detergent fiber intake data (Equation 5). Our data did not show a relationship between CH4 emissions and gross energy intake or live weight.

Downloads

Não há dados estatísticos.

Referências

Arceo-Castillo, J. I., Vázquez, A. T. P., Solís, J. R. C., Gamboa, J. A. A., Owen, P. Q., Vera, J. C. K. (2017). Evaluación de las cámaras respirométricas con bovinos alimentados con pastos tropicales para la producción de metano entérico. Revista Colombiana Ciencias Pecuarias, 30(Supl), 137-138.

Benaouda, M., González-Ronquillo, M., Appuhamy, J. A. D. R. N., Kebreab, E., Molina, L. T., Herrera-Camacho, J., ... Castelán-Ortega, O. A. (2020). Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livestock Science, 241, 104177. DOI: https://doi.org/10.1016/j.livsci.2020.104177

Bibby, J., & Toutenburg, H. (1977). Prediction and improved estimation in linear models. Chichester, GB: John Wiley.

Charmley, E., Williams, S. R. O., Moate, P. J., Hegarty, R. S., Herd, R. M., Oddy, V. H., … Hannah, M. C. (2016). A universal equation to predict methane production of forage-fed cattle in Australia. Animal Production Science, 56(3), 169-180. DOI: https://doi.org/10.1071/AN15365

Congio, G. F. S., Bannink, A., Mayorga, O. L., Rodrigues, J. P. P., Bougouin, A., Kebreab, E., ... Hristov, A. N. (2023). Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries. Science of The Total Environment, 856(Part 2), 159128. DOI: https://doi.org/10.1016/j.scitotenv.2022.159128

Congio, G. F. S., Bannink, A., Mogollón, O. L. M., Jaurena, G., Gonda, H., Gere, J. I., ... Hristov, A. N. (2021). Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: a meta-analysis. Journal of Cleaner Production, 312, 127693. DOI: https://doi.org/10.1016/j.jclepro.2021.127693

Cottle, D. J., & Eckard, R. J. (2018). Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Animal Production Science, 58(12), 2167-2177. DOI: https://doi.org/10.1071/AN17832

Díaz-Céspedes, M., Hernández-Guevara, J. E., & Gómez, C. (2021). Enteric methane emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Tropical Animal Health and Production, 53(4), 421. DOI: https://doi.org/10.1007/s11250-021-02871-4

Ellis, J. L., Kebreab, E., Odongo, N. E., McBride, B. W., Okine, E. K., & France, J. (2007). Prediction of methane production from dairy and beef cattle. Journal Dairy Science, 90(7), 3456-3466. DOI: https://doi.org/10.3168/jds.2006-675

Eugène, M., Sauvant, D., Nozière, P., Viallard, D., Oueslati, K., Lherm, M., … Doreau, M. (2019). A new Tier 3 method to calculate methane emission inventory for ruminants. Journal of Environmental Management, 231, 982-988. DOI: https://doi.org/10.1016/j.jenvman.2018.10.086

Gaviria-Uribe, X., Bolivar, D. M., Rosenstock, T. S., Molina-Botero, I. C., Chirinda, N., Barahona, R., & Arango, J. (2020). Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel cayman grass and its associations with two Leucaena shrub legumes. Frontiers in Veterinary Science, 7. DOI: https://doi.org/10.3389/fvets.2020.579189

Hales, K. E., Coppin, C. A., Smith, Z. K., McDaniel, Z. S., Tedeschi, L. O., Cole, N. A., & Galyean, M. L. (2022). Predicting metabolizable energy from digestible energy for growing and finishing beef cattle and relationships to the prediction of methane. Journal of Animal Science, 100(3), skac013. DOI: https://doi.org/10.1093/jas/skac013

Hammond, K. J., Crompton, L. A., Bannink, A., Dijkstra, J., Yáñez-Ruiz, D. R., O’Kiely, P., … Reynolds, C. K. (2016). Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology, 219, 13-30. DOI: https://doi.org/10.1016/j.anifeedsci.2016.05.018

Hegarty, R. S. (2004). Genotype differences and their impact on digestive tract function of ruminants: a review. Australian Journal of Experimental Agriculture, 44(5), 459-467. DOI: https://doi.org/10.1071/EA02148

Hristov, A. N., Kebreab, E., Niu, M., Oh, J., Bannink, A., Bayat, A. R., … Yu, Z. (2018). Symposium review: uncertainties in enteric methane inventories, measurement techniques, and prediction models. Journal of Dairy Science, 101(7), 6655-6674. DOI: https://doi.org/10.3168/jds.2017-13536

Intergovernmental Panel on Climate Change [IPCC]. (1997). IPCC guidelines for national greenhouse gas inventories. Bracknell, UK: IPCC/OECD/IEA.

Intergovernmental Panel on Climate Change [IPCC]. (2006). 2006 IPCC guidelines for national greenhouse gas inventories (Vol. 4). Kanagawa, JP: IPCC.

Intergovernmental Panel on Climate Change [IPCC]. (2019). Chapter 4: forest land. In D. Blain, F. Agus, M. A. Alfaro, & H. Vreuls (Eds.), 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories: agriculture, forestry and other land use (Vol. 4, p. 68). Kanagawa, JP: IPCC.

Jiménez-Ocampo, R., Montoya-Flores, M. D., Herrera-Torres, E., Pámanes-Carrasco, G., Arceo-Castillo, J. I., Valencia-Salazar, S. S., ... Ku-Vera, J. C. (2021). Effect of chitosan and naringin on enteric methane emissions in crossbred heifers fed tropical grass. Animals, 11(6), 1599. DOI: https://doi.org/10.3390/ani11061599

Jiménez-Ocampo, R., Montoya-Flores, M. D., Pamanes-Carrasco, G., Herrera-Torres, E., Arango, J., Estarrón-Espinosa, M., ... Ku-Vera, J. C. (2022). Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Frontiers in Veterinary Science, 9, 863910. DOI: https://doi.org/10.3389/fvets.2022.863910

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. DOI: https://doi.org/10.2527/1995.7382483x

Kaewpila, C., & Sommart, K. (2016). Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecology and Evolution, 6(20), 7422-7432. DOI: https://doi.org/10.1002/ece3.2500

Kebreab, E., Johnson, K. A., Archibeque, S. L., Pape, D., & Wirth, T. (2008). Model for estimating enteric methane emissions from United States dairy and feedlot cattle. Journal of Animal Science, 86(10), 2738-2748. DOI: https://doi.org/10.2527/jas.2008-0960

Ku-Vera, J. C., Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Arroyave-Jaramillo, J., Montoya-Flores, M. D., … Solorio-Sánchez, F. J. (2018). Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiration chambers. Agricultural and Forest Meteorology, 258, 3-7. DOI: https://doi.org/10.1016/j.agrformet.2018.01.008

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-68. PMID 2720055

Molina-Botero, I. C., Angarita, E. A., Mayorga, O. L., Chará, J., & Barahona-Rosales, R. (2016). Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livestock Science, 185, 24-29. DOI: https://doi.org/10.1016/j.livsci.2016.01.009

Molina-Botero, I. C., Arroyave-Jaramillo, J., Valencia-Salazar, S., Barahona-Rosales, R., Aguilar-Pérez, C. F., Burgos, A. A., … Ku-Vera, J. C. (2019a). Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Animal Feed Science and Technology, 251, 1-11 DOI: https://doi.org/10.1016/j.anifeedsci.2019.01.011

Molina-Botero, I. C., Donney’s, G., Montoya, S., Rivera, J. E., Villegas, G., Chará, J., & Barahona, R. (2015). La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livestock Research for Rural Development, 27(5).

Molina-Botero, I. C., Montoya-Flores, M. D., Zavala-Escalante, L. M., Barahona-Rosales, R., Arango, J., & Ku-Vera, J. C. (2019b). Effects of long-term diet supplementation with Gliricidia sepium foliage mixed with Enterolobium cyclocarpum pods on enteric methane, apparent digestibility, and rumen microbial population in crossbred heifers. Journal of Animal Science, 97(4), 1619-1633. DOI: https://doi.org/10.1093/jas/skz067

Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Romano-Muñoz, J. L., Solorio-Sánchez, F. J., Aguilar-Pérez, C. F., & Ku-Vera, J. C. (2020). Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals, 10(2), 300. DOI: https://doi.org/10.3390/ani10020300

Moraes, L. E., Strathe, A. B., Fadel, J. G., Casper, D. P., & Kebreab, E. (2014). Prediction of enteric methane emissions from cattle. Global Change Biology, 20(7), 2140-2148. DOI: https://doi.org/10.1111/gcb.12471

Muñoz-Tamayo, R., Ruiz, B., Blavy, P., Giger-Reverdin, S., Sauvant, D., Williams, S. R. O., & Moate, P. J. (2022). Predicting the dynamics of enteric methane emissions based on intake kinetic patterns in dairy cows fed diets containing either wheat or corn. Animal - Open Space, 1(1), 100003. DOI: https://doi.org/10.1016/j.anopes.2021.100003

Niu, M., Kebreab, E., Hristov, A. N., Oh, J., Arndt, C., Bannink, A., ... Yu, Z. (2018). Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24(8), 3368-3389. DOI: https://doi.org/10.1111/gcb.14094

Patra, A. K. (2017). Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and Adaptation Strategies for Global Change, 22(4), 629-650. DOI: https://doi.org/10.1007/s11027-015-9691-7

Pires Sobrinho, T. L., Branco, R. H., Magnani, E., Berndt, A., Canesin, R. C., & Mercadante, M. E. Z. (2019). Development and evaluation of prediction equations for methane emission from Nellore cattle. Acta Scientiarum. Animal Sciences, 41, 42559. DOI: https://doi.org/10.4025/actascianimsci.v41i1.42559

Ramin, M., & Huhtanen, P. (2013). Development of equations for predicting methane emissions from ruminants. Journal of Dairy Science, 96(4), 2476-2493. DOI: https://doi.org/10.3168/jds.2012-6095

Ribeiro, R. S., Rodrigues, J. P. P., Maurício, R. M., Borges, A. L. C. C., Silva, R. R., Berchielli, T. T., ... Pereira, L. G. R. (2020). Predicting enteric methane production from cattle in the tropics. Animal, 14(Suppl. 3), s438-s452. DOI: https://doi.org/10.1017/S1751731120001743

Sauvant, D., & Nozière, P. (2016). Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems. Animal, 10(5), 755-770. DOI: https://doi.org/10.1017/S1751731115002670

Storlien, T. M., Volden, H., Almøy, T., Beauchemin, K. A., McAllister, T. A., & Harstad, O. M. (2014). Prediction of enteric methane production from dairy cows. Acta Agriculturae Scandinavica, Section A — Animal Science, 64(2), 98-109. DOI: https://doi.org/10.1080/09064702.2014.959553

Suzuki, T., Sommart, K., Angthong, W., Nguyen, T. V., Chaokaur, A., Nitipot, P., ... Kawashima, T. (2018). Prediction of enteric methane emission from beef cattle in Southeast Asia. Animal Science Journal, 89(9), 1287-1295. DOI: https://doi.org/10.1111/asj.13058

Tedeschi, L. O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3), 225-247. DOI: https://doi.org/10.1016/j.agsy.2005.11.004

Tedeschi, L. O., Abdalla, A. L., Álvarez, C., Anuga, S. W., Arango, J., Beauchemin, K. A., ... Kebreab, E. (2022). Quantification of methane emitted by ruminants: a review of methods. Journal of Animal Science, 100(7), skac197. DOI: https://doi.org/10.1093/jas/skac197

Valencia-Salazar, S. S., Piñeiro-Vázquez, A. T., Molina-Botero, I. C., Lazos-Balbuena, F. J., Uuh-Narváez, J. J., Segura-Campos, M. R., … Ku-Vera, J. C. (2018). Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agricultural and Forest Meteorology, 258, 108-116. DOI: https://doi.org/10.1016/j.agrformet.2017.12.262

Van Lingen, H. , Niu, M., Kebreab, E., Valadares Filho, S., Rooke, J. A., Duthie, C.-A., ... Hristov, A. N. (2019). Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database. Agriculture, Ecosystems and Environment, 283, 106575. DOI: https://doi.org/10.1016/j.agee.2019.106575

Yan, T., Agnew, R. E., Gordon, F. J., & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science, 64(2-3), 253-263. DOI: https://doi.org/10.1016/S0301-6226(99)00145-1

Yan, T., Porter, M. G., & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal, 3(10), 1455-1462. DOI: https://doi.org/10.1017/S175173110900473X

Publicado
2024-11-12
Como Citar
Molina-Botero, I., Díaz-Céspedes, M., Mayorga-Mogollón, O., Ku-Vera, J., Arceo-Castillo, J., Montoya-Flores, M. D., Arango, J., & Gómez-Bravo, C. (2024). Validation of enteric methane emissions by cattle estimated from mathematical models using data from in vivo experiments. Acta Scientiarum. Animal Sciences, 47(1), e69328. https://doi.org/10.4025/actascianimsci.v47i1.69328
Seção
Produção Animal

Funding data

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus