Single nucleotide polymorphism in Osteopontin gene and its association with milk traits in Azikheli buffalo
Resumo
Osteopontin (OPN) is known to effect milk composition traits. This study aimed to associate OPN gene polymorphism with milk traits in Azikheli buffaloes. Data were collected for milk yield and milk composition from 30 buffaloes. DNA samples of these specimen were used to amplify exon 4, intron 4 and exon 6 of the OPN gene using predesigned primers. The PCR products were sequenced through Sanger sequencing. The results showed that the milk yield varied significantly (p < 0.001) among Azikheli buffaloes. Sanger sequencing revealed 24 SNPs in the targeted regions of OPN, among which 2 were found in the high yielding buffaloes, while 23 were in the low yielding buffaloes of which one SNP was shared. One novel SNP g.5096T>C in the intron 5 of the OPN gene showed significant association with milk yield and milk protein. non-synonymous substitutions were observed at different loci i.e., g.5521C>T (Asp108Glu), g.5505C>T (Ala128Val), g.5446T>A (Thr149Ala), and 5395CGA>DEL (Asp92Del). Among the non-synonymous mutations only Ala128Val was found to have effect on protein stability (DDG = – 0.92 kcal mol-1) due to its presence in the conserved region of the protein. In conclusion, our results suggest SNP g.5096T>C as a potential genetic marker for high milk yield in Azikheli buffalo.
Downloads
Referências
Aasmul-Olsen, K., Henriksen, N. L., Nguyen, D. N., Heckmann, A. B., Thymann, T., Sangild, P. T., & Bering, S. B. (2021) Milk osteopontin for gut, immunity and brain development in preterm pigs. Nutrients, 13(8), 2675. https://doi.org/10.3390/nu13082675
Abdel-Shafy, H., Awad, M. A., El-Regalaty, H., Ismael, A., El-Assal, S. E.-D., & Abou-Bakr, S. (2020) A single-step genomic evaluation for milk production in Egyptian buffalo. Livestock Science, 234, 103977. https://doi.org/10.1016/j.livsci.2020.103977
Al‐Bari, A. A., & Al Mamun, A. (2020) Current advances in regulation of bone homeostasis. FASEB BioAdvances, 2(11), 668-679. https://doi.org/10.1096/fba.2020-00058
Bissonnette, N. (2018) Short communication: Genetic association of variations in the osteopontin gene (SPP1) with lactation persistency in dairy cattle. Journal of Dairy Science, 101(1), 456-461. https://doi.org/10.3168/jds.2017-13129
Bustamante‐Filho, C. I., Menegassi, R. S., Pereira, R. G., Salton, D. G., Munari, M. F., Schneider, R. M., Mattos, R. C., Barcellos, J. O. J., Laurino, J. P., Cirne-Lima, E. O., & Jobim, M. I. M. (2021) Bovine seminal plasma osteopontin: Structural modelling, recombinant expression and its relationship with semen quality. Andrologia, 53(1), e13905. https://doi.org/10.1111/and.13905
Curone, G., Filipe, J., Cremonesi, P., Trevisi, E., Amadori, M., Pollera, C., Bianca Castiglioni, B., Turin, L., Tedde, V., Vigo, D., Moroni, P., Minuti, A., Bronzo, V., Filippa Addis, M., & Riva, F. Vigo, D. (2018) What we have lost: Mastitis resistance in Holstein Friesians and in a local cattle breed. Research in Veterinary Science, 116, 88-98. https://doi.org/10.1016/j.rvsc.2017.11.020
De Mello, F., Cobuci, J., Martins, M., Silva, M., & Neto, J. (2012) Association of the polymorphism g. 8514C> T in the osteopontin gene (SPP1) with milk yield in the dairy cattle breed Girolando. Animal Genetics, 43(5), 647-648.
Dettori, M. L., Pazzola, M., Petretto, E., & Vacca, G. M. (2020) Association analysis between SPP1, POFUT1 and PRLR gene variation and milk yield, composition and coagulation traits in Sarda sheep. Animals, 10(7), 1216. https://doi.org/10.3390/ani10071216
Farrell Jr, H., Jimenez-Flores, R., Bleck, G., Brown, E., Butler, J., Creamer, L., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. (2004) Nomenclature of the proteins of cows’ milk—Sixth revision. Journal of Dairy Science, 87(6), 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
Frank, J. W., Steinhauser, C. B., Wang, X., Burghardt, R. C., Bazer, F. W., & Johnson, G. A. (2021) Loss of ITGB3 in ovine conceptuses decreases conceptus expression of NOS3 and SPP1: implications for the developing placental vasculature. Biology of Reproduction, 104(3), 657-668. https://doi.org/10.1093/biolre/ioaa212
Heck, J., Van Valenberg, H., Dijkstra, J., & Van Hooijdonk, A. (2009) Seasonal variation in the Dutch bovine raw milk composition. Journal of Dairy Science, 92(10), 4745-4755. https://doi.org/10.3168/jds.2009-2146
Joung, S., Fil, J. E., Heckmann, A. B., Kvistgaard, A. S., & Dilger, R. N. (2020) Early-life supplementation of bovine milk osteopontin supports neurodevelopment and influences exploratory behavior. Nutrients, 12(8), 2206. https://doi.org/10.3390/nu12082206
Khan, H., Ali, S. M., & Yousafzai, A. A. (2019) Azikheli Buffalo Breed of Swat-Khyber Pukhtun Khwa-Pakistan. Engormix / Dairy Cattle. https://en.engormix.com/dairy-cattle/articles/azikheli-buffalo-breed-swat-t43992.htm
Khan, N., Khan, S., Israr, M., Hilal, M. G., Nawaz, M., Ibrahim, M., & Khan, N. A. (2022) Comparing Azikheli buffaloes with Nili Ravi buffaloes for morphometry, productivity and reproductivity. Pakistan Journal of Agriculture Sciences, 59(4), 693-701. https://doi.org/10.21162/PAKJAS/22
Khongsti, K., & Das, B. (2021) Osteopontin and breast cancer metastasis: Possible role of genistein on the regulation of osteopontin. Phytomedicine Plus, 1(4), 100138. https://doi.org/10.1016/j.phyplu.2021.100138
Kułaj, D., Pokorska, J., & Bauer, E. A. (2022) Associations between osteopontin gene polymorphism (OPN), milk yield, somatic cell score and age of cattle on milk antioxidant capacity. International Dairy Journal, 127, 105295. https://doi.org/10.1016/j.idairyj.2021.105295
Kułaj, D., Pokorska, J., Ochrem, A., Dusza, M. & Makulska, J. (2019) Effects of the c. 8514C> T polymorphism in the osteopontin gene (OPN) on milk production, milk composition and disease susceptibility in Holstein-Friesian cattle. Italian Journal of Animal Science, 18(1), 546-553. https://doi.org/10.1080/1828051X.2018.1547129
Lali, F. A., Anilkumar, K. & Aravindakshan, T. (2020) Effect of Osteopontin gene variants on milk production traits in Holstein Friesian crossbred cattle of Kerala. Turkish Journal of Veterinary and Animal Sciences, 44(3), 695-701. https://doi.org/10.3906/vet-1812-4
Leonard, S., Khatib, H., Schutzkus, V., Chang, Y. & Maltecca, C. (2005) Effects of the osteopontin gene variants on milk production traits in dairy cattle. Journal of Dairy Science, 88(11), 4083-4086. https://doi.org/10.3168/jds.S0022-0302(05)73092-7
Ma, Y., Khan, M. Z., Xiao, J., Alugongo, G. M., Chen, X., Chen, T., ... Shah, M. K. (2021) Genetic markers associated with milk production traits in dairy cattle. Agriculture, 11(10), 1018. https://doi.org/10.3390/agriculture11101018
Manzoor, S., Nadeem, A., Maryam, J., Hashmi, A. S., Imran, M., & Babar, M. E. (2018) Osteopontin gene polymorphism association with milk traits and its expression analysis in milk of riverine buffalo. Tropical Animal Health and Production, 50(2), 275-281. https://doi.org/10.1007/s11250-017-1426-1
Marumo, J., Lusseau, D., Speakman, J., Mackie, M., & Hambly, C. (2022) Influence of environmental factors and parity on milk yield dynamics in barn-housed dairy cattle. Journal of Dairy Science, 105(2), 1225-1241. https://doi.org/10.3168/jds.2021-20698
Matsumoto, H., Kohara, R., Sugi, M., Usui, A., Oyama, K., Mannen, H., & Sasazaki, S. (2019) The non-synonymous mutation in bovine SPP1 gene influences carcass weight. Heliyon, 5(12), e03006. https://doi.org/10.1016/j.heliyon.2019.e03006
Medhammar, E., Wijesinha‐Bettoni, R., Stadlmayr, B., Nilsson, E., Charrondiere, U. R., & Burlingame, B. (2012) Composition of milk from minor dairy animals and buffalo breeds: a biodiversity perspective. Journal of the Science of Food and Agriculture, 92(3), 445-474. https://doi.org/10.1002/jsfa.4690
Messex, J. K., Byrd, C. J., Thomas, M. U., & Liou, G.-Y. (2022) Macrophages cytokine spp1 increases growth of prostate intraepithelial neoplasia to promote prostate tumor progression. International Journal Of Molecular Sciences, 23(8), 4247. https://doi.org/10.3390/ijms23084247
Moravčikova, N., Trakovicka, A., Kadlečik, O., & Kasarda, R. (2019). Genomic signatures of selection in cattle through variation of allele frequencies and linkage disequilibrium. Journal of Central European Agriculture, 20(2), 576-580. https://doi.org/10.5513/JCEA01/20.2.2552
Murthy, S., Karkossa, I., Schmidt, C., Hoffmann, A., Hagemann, T., Rothe, K., Seifert, O., Ulf Anderegg, U., von Bergen, M., Schubert, K., & Rossol, M. (2022) Danger signal extracellular calcium initiates differentiation of monocytes into SPP1/osteopontin-producing macrophages. Cell Death and Disease, 13(1), 1-15. https://doi.org/10.1038/s41419-022-04507-3
Nadeem, A., Majeed, R., Babar, M. E., Yaqub, T., Javed, M., Hussain, T., & Khosa, A. N. (2013) Genetic Variants of POU1F1 gene in Azakheli buffalo breed of Pakistan. Buffalo Bulletin, 32(SI 2), 692-696.
Pareek, C., Zięba, M., Michno, J., Czarnik, U., & Zwierzchowski, L. (2008) Study of SNP C> T polymorphism within the candidate genes for dairy and beef traits in a panel. Journal of Agrobiology, 25, 121-124.
Pasandideh, M., Mohammadabadi, M., Esmailizadeh, A., & Tarang, A. (2015) Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech Journal of Animal Science, 60(3), 97-104. https://doi.org/10.17221/8074-CJAS
Ramón, M., Carabaño, M. J., Díaz, C., Kapsona, V. V., Banos, G., & Sánchez-Molano, E. (2021) Breeding strategies for weather resilience in small ruminants in Atlantic and Mediterranean climates. Frontiers in Genetics, 12, 1588.
Raza, S. H. A., Khan, R., Pant, S. D., Shah, M. A., Quan, G., Feng, L., Cheng, G., Gui, L.-S., & Zan, L. (2023) Genetic variation in the OPN gene affects milk composition in Chinese Holstein cows. Animal Biotechnology, 34(4), 893-899. https://doi.org/10.1080/10495398.2021.2001343
Schnabel, R. D., Kim, J.-J., Ashwell, M. S., Sonstegard, T. S., Van Tassell, C. P., Connor, E. E., & Taylor, J. F. (2005) Fine-mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. Proceedings of the National Academy of Sciences, 102(19), 6896-6901. https://doi.org/10.1073/pnas.0502398102
Sheehy, P., Riley, L., Raadsma, H., Williamson, P., & Wynn, P. (2009) A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Animal Genetics, 40(4), 492-498. https://doi.org/10.1111/j.1365-2052.2009.01862.x
Suchit, K. (2018) Role of osteopontin in bovines and their association with different traits: A review. International Journal of Genetics, 10(3), 370-372. https://doi.org/10.9735/0975-2862.10.3.370-372
Tantia, M. S., Mishra, B., Kumar, S. B., Mishra, B., Kataria, R., Mukesh, M., & Vijh, R. (2008) Characterization of osteopontin gene of Bubalus bubalis. Animal, 2(7), 987-990. https://doi.org/10.1017/S1751731108002073
Wang, J.-B., Zhang, Z., Li, J.-N., Yang, T., Du, S., Cao, R.-J., & Cui, S.-S. (2020) SPP1 promotes Schwann cell proliferation and survival through PKCα by binding with CD44 and αvβ3 after peripheral nerve injury. Cell and Bioscience, 10(98), 1-14. https://doi.org/10.1186/s13578-020-00458-4
Wang, X.-B., Qi, Q.-R., Wu, K.-L. & Xie, Q.-Z. (2018) Role of osteopontin in decidualization and pregnancy success. Reproduction, 155(5), 423-432. https://doi.org/10.1530/REP-17-0782
White, S., Casas, E., Allan, M., Keele, J., Snelling, W., Wheeler, T., Shackelford, S. D., & Koohmaraie, M.,Smith, T. (2007) Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an osteopontin polymorphism associated with postweaning growth. Journal of Animal Science, 85(1), 1-10. https://doi.org/10.2527/jas.2006-314
Copyright (c) 2025 Arshia Rauf, Sohail Ahmad, Sundus Altaf, Shehryar Khattak, Bibi Sabiha, Muhammad Ibrahim

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.