Evaluation of some hormones in patients with major β-Thalassemia in the Nineveh Governorate - Iraq
Resumo
Thalassemia is one of the most important genetic haemolytic diseases that cause the breakdown of red blood cells (RBCs) in patients with β-Thalassemia major. The body does not produce enough haemoglobin, which is an important part of RBCs. When there is not enough haemoglobin, RBCs do not function properly in the body, so the condition continues for short periods of time. The current studies aimed to determine the extent of the impact of β-Thalassemia major on some hormonal variables in the serum of 80 patients (40 males and 40 females) aged between (1-15) years, in addition to 20 healthy children of the same age range and of both sexes, who were considered as a control group. The results of this study showed a significant increase in the concentration of erythropoietin (EPO) by 187% in the serum of patients with β-Thalassemia major compared to healthy of both sexes, with an increase of 188 in males and 183% in females. The highest significant increase was in the age group of (11-15) years in males and females compared to healthy control. The results also showed a significant decrease in the concentration of hepcidin and growth hormones in the serum of patients with a decrease of 55 and 56% respectively compared to healthy individuals of both sexes, with a highest significant decrease of 56 and 59% in males, and 55 and 52% in females respectively. The highest significant decrease was in the age group of (11-15) years for both hormones in males and females compared to healthy control based on age groups and sex.
Downloads
Referências
Al-Hakeim, H. K. A. H., & Al-Hakany, M. F. M. (2013). The effect of iron overload on the function of some endocrine glands in β-Thalassemia major patients. Magazin of Al-Kufa University for Biology, 5(2).
Ambachew, S., & Biadgo, B. (2017). Hepcidin in iron homeostasis: diagnostic and therapeutic implications in type 2 diabetes mellitus patients. Acta Haematologica, 138(4), 183-193. DOI: https://doi.org/10.1159/000481391
Amer, J., Dana, M., & Fibach, E. (2010). The antioxidant effect of erythropoietin on thalassemic blood cells. Anemia, 978710. DOI: https://doi.org/10.1155/2010/978710
Au, T. Y., Benjamin, S., & Wiśniewski, O. W. (2022). Is the role of hepcidin and erythroferrone in the pathogenesis of beta thalassemia the key to developing novel treatment strategies? Thalassemia Reports, 12(3), 123-134. DOI: https://doi.org/10.3390/thalassrep12030017
Bahadorimonfared, A., Alirezaei, A., Zare, E., & Bakhtiyari, M. (2017). Beyond hematopoietic property; administration of erythropoietin for nephroprotection. Journal of Renal Injury Prevention, 6(4), 292-296. DOI: https://doi.org/10.15171/jrip.2017.56
Brancaleoni, V., Di Pierro, E., Motta, I., & Cappellini, M. D. (2016). Laboratory diagnosis of thalassemia. International Journal of Laboratory Hematology, 38(S1), 32-40. DOI: https://doi.org/10.1111/ijlh.12527
Breymann, C., Fibach, E., Visca, E., Huettner, C., Huch, A., & Huch, R. (1999). Induction of fetal hemoglobin synthesis with recombinant human erythropoietin in anemic patients with heterozygous beta-thalassemia during pregnancy. The Journal of Maternal‐Fetal Medicine, 8(1), 1-7. DOI: https://doi.org/10.1002/(SICI)1520-6661(199901/02)8:1<1::AID-MFM1>3.0.CO;2-O
Caputo, M., Pigni, S., Agosti, E., Daffara, T., Ferrero, A., Filigheddu, N., & Prodam, F. (2021). Regulation of GH and GH Signaling by Nutrients. Cells, 10(6), 1376.
Çetin, M., Ünal, Ş., Gümrük, F., Gürgey, A., & Altay, Ç. (2009). Serum erythropoietin levels in pediatric hematologic disorders and impact of recombinant human erythropoietin use. Turkish Journal of Haematology, 26(2), 72-76.
Chaisiripoomkere, W., Jootar, S., Chanjarunee, S., & Ungkanont, A. (1999). Serum erythropoietin levels in thalassemia major and intermedia. Southeast Asian Journal of Tropical Medicine and Public Health, 30(4), 786-788.
Clark, R. J., Tan, C. C., Preza, G. C., Nemeth, E., Ganz, T., & Craik, D. J. (2011). Understanding the structure/activity relationships of the iron regulatory peptide hepcidin. Chemistry & Biology, 18(3), 336-343. DOI: https://doi.org/10.1016/j.chembiol.2010.12.009
Coffey, R., & Ganz, T. (2018). Erythroferrone: an erythroid regulator of hepcidin and iron metabolism. Hemasphere, 2(2), e35. DOI: https://doi.org/10.1097/HS9.0000000000000035
Courselaud, B., Pigeon, C., Inoue, Y., Inoue, J., Gonzalez, F. J., Leroyer, P., ... Ilyin, G. (2002). C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. Journal of Biological Chemistry, 277(43), 41163-41170. DOI: https://doi.org/10.1074/jbc.M202653200
De Sanctis, V. (2002). Growth and puberty and its management in thalassaemia. Hormone Research, 58(suppl. 1), 72-79. DOI: https://doi.org/10.1159/000064766
De Sanctis, V., Kattamis, C., Canatan, D., Soliman, A. T., Elsedfy, H., Karimi, M., ... Angastiniotis, M. (2017). β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterranean Journal of Hematology and Infectious Diseases, 9(1), e2017018. DOI: https://doi.org/10.4084/MJHID.2017.018
Duchnowska, R., & Szczylik, C. (2003). Non-hematological role of erythropoietin. Onkologia Polska, 6(3), 109-112.
Eckardt, K.-U., Bärthlein, B., Baid-Agrawal, S., Beck, A., Busch, M., Eitner, F., ... Titze, S. (2012). The German chronic kidney disease (GCKD) study: design and methods. Nephrology Dialysis Transplantation, 27(4), 1454-1460. DOI: https://doi.org/10.1093/ndt/gfr456
Faiq, A. B., Hamabor, S. O., & Salih, M. A. H. (2022). Assessment of liver, thyroid gland and growth hormone functions in beta thalassemia major. Iraqi Journal of Science, 63(4), 1413-1422. DOI: https://doi.org/10.24996/ijs.2022.63.4.2
Finkenstedt, A., Krapf, S., Viveiros, A., Schäfer, B., Griesmacher, A., Vogel, W., & Zoller, H. (2016). The “iron score” is an meld-independent predictor of survival in patients with liver cirrhosis. Journal of Hepatology, 64(2), S443. DOI: https://doi.org/10.1016/s0168-8278(16)00731-5
Ganz, T. (2006). Hepcidin—a peptide hormone at the interface of innate immunity and iron metabolism. Current Topics in Microbiology and Immunology, 306, 183-198. DOI: https://doi.org/10.1007/3-540-29916-5_7
Gholamzadeh, R., Eskandari, M., Bigdeli, M. R., & Mostafavi, H. (2018). Erythropoietin pretreatment effect on blood glucose and its relationship with inflammatory factors after brain ischemic-reperfusion injury in rats. Basic and Clinical Neuroscience, 9(5), 347-356. DOI: https://doi.org/10.32598/bcn.9.5.347
Haase, V. H. (2013). Regulation of erythropoiesis by hypoxia-inducible factors. Blood Reviews, 27(1), 41-53. DOI: https://doi.org/10.1016/j.blre.2012.12.003
Hamed, O. M., Al-Taii, R. A., & Jankeer, M. H. (2021). Biochemical and genetic study in blood of β– Thalassaemia children in mosul city, Iraq. Iraqi Journal of Science, 62(8), 2501-2508. DOI: https://doi.org/10.24996/ijs.2021.62.8.2
Hasoon, I. G., Shani, W. S., & Radi, A. M. (2020). The association of hepcidin with some inflammatory markers in β-thalassemia major patients of Basrah Province. Eurasian Journal of BioSciences, 14, 7285-7289.
Hesham, M. A., El-Safy, U. R., El-Taweel, Y. A.-H., & Omar, M. M. H. (2022). Frequency of neurological manifestations in β-Thalassaemic patients in zagazig university hospitals. The Egyptian Journal of Hospital Medicine, 86, 391-397. DOI: https://doi.org/10.21608/EJHM.2022.212847
Hinton, P. R. (2004). Statistics explaned (2nd ed.). New York, NY: Routledge.
Huang, Y., Lei, Y., Liu, R., Liu, J., Yang, G., Xiang, Z., ... Lai, Y. (2019). Imbalance of erythropoiesis and iron metabolism in patients with thalassemia. International Journal of Medical Sciences, 16(2), 302-310. DOI: https://doi.org/10.7150/ijms.27829
Katavetin, P., Inagi, R., Miyata, T., Shao, J., Sassa, R., Adler, S., ... Nangaku, M. (2007). Erythropoietin induces heme oxygenase-1 expression and attenuates oxidative stress. Biochemical and Biophysical Research Communications, 359(4), 928-934. DOI: https://doi.org/10.1016/j.bbrc.2007.05.207
Krohn, K., Haffner, D., Hügel, U., Himmele, R., Klaus, G., Mehls, O., & Schaefer, F. (2003). 1,25(OH)2D3 and dihydrotestosterone interact to regulate proliferation and differentiation of epiphyseal chondrocytes. Calcified Tissue International, 73, 400-410. DOI: https://doi.org/10.1007/s00223-002-2160-9
Lee, N., Makani, J., Tluway, F., Makubi, A., Armitage, A. E., Pasricha, S.-R., ... Cox, S. E. (2018). Decreased Hepcidin levels are associated with low steady-state hemoglobin in children with sickle cell disease in Tanzania. EBioMedicine, 34, 158-164. DOI: https://doi.org/10.1016/j.ebiom.2018.07.024
Lin, H., Luo, X., Jin, B., Shi, H., & Gong, H. (2015). The effect of EPO gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells. Cell Biochemistry and Biophysics, 71, 1365-1372. DOI: https://doi.org/10.1007/s12013-014-0358-x
Lundby, C., & Olsen, N. V. (2011). Effects of recombinant human erythropoietin in normal humans. The Journal of Physiology, 589(Pt. 6), 1265-1271. DOI: https://doi.org/10.1113/jphysiol.2010.195917
MuhammadJawad, I. A., Saeed, M. T., Mumtaz, G., Iram, S., & Mohsin, S. (2016). Hepcidin levels in multi transfused β thalassemia major patients. Journal of Rawalpindi Medical College, 20(3).
Nguyen, H., & Nguyen, H. (2017). AB023. Evaluation the outcome of β-thalassemia intermedia patients on hydroxyurea combined with erythropoietin at National Children’s Hospital. Annals of Translational Medicine, 5(Suppl 2), AB023. DOI: https://doi.org/10.21037/atm.2017.s023
Ohene-Frempong, K., & Schwartz, E. (1980). Clinical features of thalassemia. Pediatric Clinics of North America, 27(2), 403-420. DOI: https://doi.org/10.1016/s0031-3955(16)33858-5
Pincelli, A. I., Masera, N., Tavecchia, L., Perotti, M., Perra, S., Mariani, R., ... Masera, G. (2011). GH deficiency in adult B-thalassemia major patients and its relationship with IGF-1 production. Pediatric Endocrinology Reviews: PER, 8(Suppl 2), 284-289.
Polat, C. (2021). Mutation analysis of beta-thalassemia major patients and their parents in diyarbakir Province, Turkey. Dicle Tıp Dergisi, 48(1), 47-54. DOI: https://doi.org/10.5798/dicletip.887407
Rivella, S. (2015). β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica, 100(4), 418-430. DOI: https://doi.org/10.3324/haematol.2014.114827
Smesam, H. N. K., Albuthabhak, H. A. Q., Arjmand, S., Al-Hakeim, H. K., & Siadat, S. O. R. (2020). Evaluation of erythroferrone, hepcidin, and iron overload status in Iraqi transfusion-dependent β-thalassemia major patients. Hemoglobin, 44(4), 272-277. DOI: https://doi.org/10.1080/03630269.2020.1794888
Smyczynska, J., Hilczer, M., Stawerska, R., & Lewinski, A. (2010). Thyroid function in children with growth hormone (GH) deficiency during the initial phase of GH replacement therapy - clinical implications. Thyroid Research, 3(1), 2. DOI: https://doi.org/10.1186/1756-6614-3-2
Soliman, A. T., Abushahin, A., Abohezeima, K., Khalafallah, H., Adel, A., Elawwa, A., & Elmulla, N. (2011). Age related IGF-I changes and IGF-I generation in thalassemia major. Pediatric Endocrinology Reviews, 8(Suppl 2), 278-283.
Soliman, A. T., ElZalabany, M. M., Mazloum, Y., Bedair, S. M., Ragab, M. S., Rogol, A. D., & Ansari, B. M. (1999). Spontaneous and provoked growth hormone (GH) secretion and insulin-like growth factor I (IGF-I) concentration in patients with beta thalassaemia and delayed growth. Journal of Tropical Pediatrics, 45(6), 327-337. DOI: https://doi.org/10.1093/tropej/45.6.327
Souma, T., Suzuki, N., & Yamamoto, M. (2015). Renal erythropoietin-producing cells in health and disease. Frontiers in Physiology, 6, 167. DOI: https://doi.org/10.3389/fphys.2015.00167
Taher, A. T., & Saliba, A. N. (2017). Iron overload in thalassemia: different organs at different rates. The American Society of Hematology Education Program, (1), 265-271. DOI: https://doi.org/10.1182/asheducation-2017.1.265
Wu, K. H., Tsai, F. J., & Peng, C. T. (2003). Growth hormone (GH) deficiency in patients with beta-thalassemia major and the efficacy of recombinant GH treatment. Annals of Hematology, 82(10), 637-640. DOI: https://doi.org/10.1007/s00277-003-0712-3
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.