Morphometric and thermo-physiological diversity in two chicken genotypes kept by rural farmers under tropical conditions
Resumo
This study investigated phenotypic diversity in indigenous normal feathered and Noiler chickens kept by rural farmers in Nasarawa State, Nigeria. A total of 180 birds at six weeks of age, comprising equal sexes were randomly sampled. Body weight, six primary biometric traits, four morphological indices and four thermo-physiological traits were measured on each bird for six months. The general linear model was used to test the fixed and interaction effects of genotype, sex and location on these traits. Noiler birds had higher (p < 0.05) morphometric traits and morphological indices than indigenous chickens, except for stockiness. Male birds outperformed their female counterparts in body traits and indices, while location effect was also significant. Heat tolerance traits were similar across genotypes, except for higher pulse rate in Noilers. Female birds appeared more stressed thermally while Nasarawa South birds exhibited higher thermal stress. There were significant (p < 0.05) effects of genotype*sex, genotype*location and sex*location interactions on most body parameters, morphological indices and heat tolerance traits. Optimal body weights for both Noiler male and female chickens were predicted at 25.83 and 27.25 weeks. The present findings would provide a basis for the conservation and genetic improvement of both chicken genotypes in Nigeria.
Downloads
Referências
Adedeji, T. A., Amao, S. R., Ogundairo, O. M., & Fasoyin, O. A. (2015). Heat tolerance attributes of Nigerian locally adapted chickens as affected by strain and some qualitative traits. Journal of Biology, Agriculture and Healthcare, 5(17), 50-55.
Ajayi, O. O., Adeleke, M. A., Sanni, M. T., Yakubu, A., Peters, S. O., Imumorin, I. G., Ikeobi, C. O. N., Ozoje, M. O., & Adebambo, O.A. (2012). Application of principal component and discriminant analyses to morphostructural indices of indigenous and exotic chickens raised under intensive management system. Tropical Animal Health and Production, 44(5), 1247-1254. https://doi.org/10.1007/s11250-011-0065-1
Al-Atiyat, R. M., Aljumaah, R. S., Abudabos, A. M., Alotybi, M. N., Harron, R. M., Algawaan, A. S., & Aljooan, H. S. (2017). Differentiation of free-ranging chicken using discriminant analysis of phenotypic traits. Revista Brasileira de Zootecnia, 46(10), 791-799. http://dx.doi.org/10.1590/S1806-92902017001000001
Al-Tamimi, H., Mahmoud, K., Al-Dawood, A., Nusairat, B., & Khalaf, H. B. (2019). Thermotolerance of broiler chicks ingesting dietary betaine and/or creatine. Animals, 9(10). https://doi.org/10.3390/ani9100742.
Assefa, H., & Melesse, A. (2018). Morphological and Morphometric characterization of indigenous chicken populations in Sheka Zone, South Western Ethiopia. Poultry, Fisheries and Wildlife Sciences, 6(2). https://doi.org/10.4172/2375-446X.1000200.
Ayo, J. O., Obidi, J. A., & Rekwot, P. I. (2011). Effects of heat stress on the well-being, fertility, and hatchability of chickens in the northern guinea savannah zone of Nigeria: A review. International Scholarly Research Notices, Veterinary Science, 2011, 838606. https://doi.org/10.5402/2011/838606
Bamidele, O., Akinsola, O. M., Yakubu, A., Hassan, W. A., Ogundu, U. E., & Amole, T. A. (2023). Growth performance, survivability and profitability of improved smallholder chicken genetics in Nigeria: A COVID-19 intervention study. Frontiers in Genetics, 13, 1033654. https://doi.org/10.3389/fgene.2022.1033654
Bamidele O., Sonaiya E. B., Adebambo O. A. and Dessie T. (2020). On-station performance evaluation of improved tropically adapted chicken breeds for smallholder poultry production systems in Nigeria. Tropical Animal Health and Production, 52(4), 1541-1548. https://doi.org/10.1007/s11250-019-02158-9
Bennett, C. E., Thomas, R., Williams, M., Zalasiewicz, J., Edgeworth, M., Miller, H., Coles, B., Foster, A., Burton, E.J., & Marume, U. (2018). The broiler chicken as a signal of a human reconfigured biosphere. Royal Society Open Science, 5(12).http://dx.doi.org/10.1098/rsos.180325
Brown, M. M., Alenyorege, B., Teye, G. A., & Roessler, R. (2017). Phenotypic diversity, major genes and production potential of local chickens and guinea fowl in Tamale, northern Ghana. Asian-Australasian Journal of Animal Sciences, 30(10), 1372–1381. https://doi.org/10.5713/ajas.17.0145
de Kinderen, M. A. J., Sölkner, J., Mészáros, G., Alemu, S. W., Esatu, W., Bastiaansen, J. W. M., Komen, H., & Dessie, T. (2023). Genotype by Environment Interactions (G*E) of Chickens Tested in Ethiopia Using Body Weight as a Performance Trait. Animals : an open access Journal from MDPI, 13(19). https://doi.org/10.3390/ani13193121
Elfwing, M., Nätt, D., Goerlich-Jansson, V. C., Persson, M., Hjelm, J., & Jensen, P. (2015). Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens. PLoS One, 10(5), e0125808. https://doi.org/10.1371/journal.pone.0125808
El-Gendy, E. A., Nassar, M. K., & Mostageer, A. (2007). Genotype-environment interaction in relation to heat tolerance in chickens. Variation in juvenile growth of warm region’s oriented breeds. International Journal of Poultry Science, 6, 322-328.
El-Henfnawy, M., El-Gendy, E. A., El-Kaiaty, A. M., & Helal, M. (2022).Genotype-by-sex interaction effect on growth traits at different ages in slow-growing chickens.Journal of Animal Health and Production, 10(2), 226-231. http://dx.doi.org/10.17582/journal.jahp/2022/10.2.226.231
Espinha, L. P., Souza, F. A., Capalbo, A. C., Bícego, K. C., Macari, M., & Gargaglioni, L. H. (2014). Age and gender influence the cardiorespiratory function and metabolic rate of broiler chicks during normocapnia and hypercapnia. Respiratory Physiology and Neurobiology, 200, 50-56. https://doi.org/10.1016/j.resp.2014.05.013
Felver-Gant, J. N., Mack, L. A., Dennis, R. L., Eicher, S. D., & Cheng H. W. (2012). Genetic variations alter physiological responses following heat stress in 2 strains of laying hens. Poultry Science, 91(7), 1542–1551. https://doi.org/10.3382/ps.2011-01988
Fox, A. D., King, R., & Watkin, J. (1992). Seasonal variation in weight, body measurements and condition of free living Teal. Bird Study, 39, 53-62. https://doi.org/10.1080/00063659209477099
Fryxell, D. C., Weiler, D. E., Kinnison, M. T., & Palkovacs, E. P. (2019). Eco-Evolutionary Dynamics of Sexual Dimorphism. Trends in Ecology and Evolution, 34(7), 591-594. https://doi.org/10.1016/j.tree.2019.04.007
Geffroy, B.& Dou, M. (2019). The adaptive sex in stressful environments. Trend in Ecology and Evolution, 34, (7), 628-640. https://doi.org/10.1016/j.tree.2019.02.012
Hassan, W. A. ., Yakubu, A. ., Ajayi, F. O., Ogundu, U. E., Alabi, O. ., Bamidele, O. ., & Adebambo, O. A. (2024). Genetic Differences in Performance of Five Chicken Genotypes reared in Five Sub-National Zones in Nigeria. Nigerian Journal of Animal Production, 103–105. https://doi.org/10.51791/njap.vi.4256
IBM Corporation. (2015). IBM SPSS Statistics for Windows (Version 23.0). https://www.ibm.com/spss
Iqbal, F., Eyduran, E., Mikail, N., Sarıyel, V., Huma, Z.E., Aygün, A., & Keskin, İ. (2020). A Bayesian approach for describing the growth of Chukar partridges. European Poultry Science, 83. https://doi.org/10.1399/eps.2019.284
Isidahomen, C. E., Njidda, A. A., & Olatunji, E. A. (2012). Heat tolerant traits among local and exotic chickens in southern Nigeria. IOSR Journal of Agriculture and Veterinary Science, 1(6), 31–36. https://doi.org/10.9790/2380-0163136
Johnsson, M., Henriksen, R., Höglund, A., Fogelholm, J., Jensen, P., & Wright, D. (2018). Genetical genomics of growth in a chicken model. BMC Genomics, 19, 72. https://doi.org/10.1186/s12864-018-4441-3
Kantanen, J., Løvendahl, P., Strandberg, E., Eythorsdottir, E., Li, M-H., Kettunen-Præbel, A., Berg, P., & Meuwissen, T. (2015). Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries. Frontiers in Genetics, 6 https://doi.org/10.3389/fgene.2015.00052
Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., Hoang, A., Gilbert, P., & Beerli, P. (2001). The strength of phenotypic selection in natural populations. The American Naturalist, 157(3), 245 261. https://doi.org/10.1086/319193
Laenoi, W., Kunkalw, W., & Buranawit, K. (2015). Characterization and farm management of indigenous chicken reared in highland region of northern Thailand. Agriculture and Agricultural Science Procedia, 5, 127-132. https://doi.org/10.1016/j.aaspro.2015.08.019.
Lamont, S. J., Coble, D. J., Bjorkquist, A., Rothschild, F. M., Persia, M., Ashwell, C., & Schmidt, C. (2014). Genomics of heat stress in chickens. Proceedings of the World Congress on Genetics Applied to Livestock Production, 46. https://dr.lib.iastate.edu/handle/20.500.12876/104540
Li, M., Wang, J., Hu, S., Stott, P., Lin, B., Li., L., Liu, H., Bao, H., Cui, D. and Jiang, G., (2020). Scale differences in the dependence of seasonal bird diversity on landscape structure: A case study in northeastern China. Pakistan Journal of Zoology, 52, 23-35. https://dx.doi.org/10.17582/journal.pjz/2020.52.1.23.35.
Lozano-Jaramillo, M., Alemu, S. W., Dessie, T., Komen, H., & Bastiaansen, J. W. M. (2019). Using phenotypic distribution models to predict livestock performance. Scientific Reports, 9, 15371. https://doi.org/10.1038/s41598-019-51910-6
Maharani, D., Hariyono, D. N. H., Putra, D. D. I., Lee, J-H., & Sidadolog, J. H. P. (2019). Phenotypic characterization of local female duck populations in Indonesia. Journal of Asia-Pacific Biodiversity, 12(4), 508-514. https://doi.org/10.1016/j.japb.2019.07.004.
Malomane, D. K., Norris, D., Banga, C. B., & Ngambi, J. W. (2014). Use of factor scores for predicting body weight from linear body measurements in three South African indigenous chicken breeds. Tropical Animal Health and Production, 46(2), 331-335. https://doi.org/10.1007/s11250-013-0492-2.
Maniatis, G, Demiris, N., Kranis, A., Banos, G., & Kominakis, A. (2013). Genetic analysis of sexual dimorphism of body weight in broilers. Journal of Applied Genetics, 54, 61-70. https://doi.org/10.1007/s13353-012-0116-y
Markos, S., Belay, B., & Dessie, T. (2024). Morphometric differentiation of three chicken ecotypes of Ethiopia using multivariate analysis. PLoS One, 19(2), e0295134. https://doi.org/10.1371/journal.pone.0295134
Menchetti, L., Birolo, M., Mugnai, C., Mancinelli, A. C., Xiccato, G., Trocino, A., & Castellini, C. (2024). Effect of genotype and nutritional and environmental challenges on growth curve dynamics of broiler chickens. Poultry Science, 103(10), 104095. https://doi.org/10.1016/j.psj.2024.104095.
Mpenda, F. N., Schilling, M. A., Campbell, Z., Mngumi, E. B., & Buza, J. (2019). The genetic diversity of local african chickens: A potential for selection of chickens resistant to viral infections. Journal of Applied Poultry Research, 28, 1–12. https://doi.org/10.3382/japr/pfy063.
Mutibvu, T. Chimonyo, M., & Halimani, T. E. (2017). Physiological Responses of Slow-Growing Chickens under Diurnally Cycling Temperature in a Hot Environment. Brazilian Journal of Poultry Science, 19(4), 567-576. https://doi.org/10.1590/1806-9061-2017-0485
Nawaz, A. H., Amoah, K., Leng, Q. Y., Zheng, J. H., Zhang, W. L., & Zhang L. (2021). Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Frontiers in Veterinary Science, 8, 699081. https://doi.org/10.3389/fvets.2021.699081
Negash, F. (2021). Application of principal component analysis for predicting body weight of Ethiopian indigenous chicken populations. Tropical Animal Health and Production, 53, 104. https://doi.org/10.1007/s11250-020-02526-w
Oblakova, M. (2007). Weight development and body configuration of turkey-broiler parents Big-6. Trakia Journal of Science, 5, 33-39.
Okoro, V. M. O., Ravhuhali, K. E., Mapholi, T. H., Mbajiorgu, E. F., & Mbajiorgu, C. (2017). Effect of age on production characteristics of Boschveld indigenous chickens of South Africa reared intensively. South African Journal of Animal Science, 47(2), 157-167. https://doi.org/10.4314/sajas.v47i2.7.
Olaniyan, A. A., Akinyemi, M. O., Osaiyuwu, H. O. & Salako, A. E. (2017). Analysis of growth models of Japanese quails (Coturnix Coturnix japonica) in Nigeria. Thai Journal of Agriculture Science, 50(3-4), 155−165.
Olfati, A., Mojtahedin, A., Sadeghi, T., Akbari, M., & Martínez-Pastor, F. (2018). Comparison of growth performance and immune responses of broiler chicks reared under heat stress, cold stress and thermoneutral conditions. Spanish Journal of Agricultural Research, 16, (2) e0505. https://doi.org/10.5424/sjar/2018162-12753.
Padhi, M. K. (2016). Importance of Indigenous Breeds of Chicken for Rural Economy and Their Improvements for Higher Production Performance. Scientifica, 2016. https://doi.org/10.1155/2016/2604685.
Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145-163. https://doi.org/10.1016/j.crm.2017.02.001
Rose, K. A., Codd, J. R., & Nudds, R. L. (2016). Differential sex-specific walking kinematics in leghorn chickens (Gallus gallus domesticus) selectively bred for different body size. Journal of Experimental Biology, 219(16), 2525-2533. https://doi.org/10.1242/jeb.139709.
Sarker, N. P., Hoque, A., Faruque, S., Isalam, N., & Bhuiyan, F. H. (2014). An ex situ study on body characteristics and effect of plumage color on body weight of indigenous chicken (Gallus domesticus) in Bangladesh. Acta Scientiarum. Animal Sciences, 36(1). https://doi.org/10.4025/actascianimsci.v36i1.20118.
Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2015). Modelling growth curves in a nondescript Italian chicken breed: an opportunity to improve genetic and feeding strategies. Journal of Poultry Science, 52(4), 288-294. https://doi.org/10.2141/jpsa.0150048
Teguia, A., Ngandjou, H. M., Defang, H., & Tchoumboue, J. (2008). Study of the live body weight and body characteristics of the African Muscovy Duck (Cairina moschata). Tropical Animal Health and Production, 40, 5-10. https://doi.org/10.1007/s11250-007-9030-9034
Terfa, Z. G., Garikipati, S., Kassie, G. T., Dessie, T., & Christley, R. M. (2019). Understanding farmers' preference for traits of chickens in rural Ethiopia.Agricultural Economics, 50(4), 451-463. https://doi.org/10.1111/agec.12502
Vargas, P. A. T., González, F. J. N., Landi, V., Jurado, J. M. L., & Bermejo, J. V. D. (2020). Sexual dimorphism and breed characterization of Creole Hens through biometric canonical discriminant analysis across Ecuadorian Agroecological Areas. Animals, 10. https://doi.org/10.3390/ani10010032
Yahav, S., & McMurtry, J. P. (2001). Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life- The effect of timing and ambient temperature. Poultry Science, 80(12), 1662–1666. https://doi.org/10.1093/ps/80.12.1662
Yakubu, A. (2011). Discriminant analysis of sexual dimorphism in morphological traits of African Muscovy ducks (Cairina moschata). Archivos de Zootecnia, 60(232), 1115-1123. https://dx.doi.org/10.4321/S0004-05922011000400027
Yakubu, A., & Ari, M. M. (2018). Principal component and discriminant analyses of body weight and conformation traits of Sasso, Kuroiler and indigenous Fulani chickens in Nigeria. Journal of Animal and Plant Sciences, 28, 46-55.
Yakubu, A., Bamidele, O., Hassan, W. A., Ajayi, F. O., Ogundu, U. E., Alabi, O., Sonaiya, E. B., & Adebambo, O. A (2020). Farmers’ choice of genotypes and trait preferences in tropically-adapted chickens in five agro-ecological zones in Nigeria. Tropical Animal Health and Production, 52(1), 95–107. https://doi.org/10.1007/s11250-019-01993-0
Yakubu, A., Oluremi, O. I. A., & Ekpo, E. I. (2018). Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network. International Journal of Biometeorology, 62(7), 1181-1186. https://doi.org/10.1007/s00484-018-1521-7.
Yakubu, A., & Madaki, J. (2017.) Modelling growth of dual-purpose Sasso hens in the tropics using different algorithms. Journal of Genetics and Molecular Biology, 1(1), 1-9. https://doi.org/10.35841/genetics-molecular-biology.1.1.1-9
Zidane, A., Ababou, A., Metlef, S., Niar, A., & Bouderoua, K. (2018). Growth and meat quality of three free-range chickens and commercial broiler under the same breeding conditions. Acta Scientiarum. Animal Sciences, 40(1), e39663. https://doi.org/10.4025/actascianimsci.v40i1.39663
Zidane, A., Ababou, A., Taherti, M., Metlef, S., Niar, A., & Gadouche, L. (2022). Growth and meat quality of three free-range chickens and commercial broiler under the same breeding conditions. Acta Scientiarum. Animal Sciences, 45(1), e58786. https://doi.org/10.4025/actascianimsci.v45i1.58786.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.