Next generation sequencing and bio-informatics analysis for the investigation of the vaginal bacterial microflora of clinically healthy mares

  • Antonia Mataragka Agricultural University of Athens https://orcid.org/0000-0002-2539-4427
  • Andrianna Symeonidou Agricultural University of Athens
  • John Ikonomopoulos Agricultural University of Athens
  • Nikolaos Tzimotoudis Hellenic Army Biological Research Center
  • Georgia Diakoudi University of Bari Aldo Moro
  • Gianvito Lanave University of Bari Aldo Moro
  • Nicola Decaro University of Bari Aldo Moro
  • Eleni Papakonstantinou Agricultural University of Athens
  • Dimitrios Vlachakis Agricultural University of Athens / National and Kapodestrian University of Athens / Biomedical Research Foundation of the Academy of Athens / King’s College London

Resumo

This study was focused on the investigation of the constitution of the vaginal bacterial microflora of mares, using 16Sr-RNA next generation sequencing and bio-informatics analysis. Samples were collected from the inner vaginal wall of 30 clinically healthy adult mares from various locations in central Greece. Successful reads were retrieved from 28 samples resulting to the presumptive identification of 192 bacterial species belonging to 87 genera.  None of the bacterial genera or species that were detected was present in all the test samples, which indicates that the vaginal bacterial microflora of the study population is diverse. The bacterial genera detected the most in the test samples were Staphylococcus (89%) and Acinetobacter (54%). The bio-informatics analysis produced evidence of a much richer microbiota for the Greek native, compared to the Arabian and other breeds, and indicated variations in its constitution associated with the reproduction and vaccination records.

Downloads

Não há dados estatísticos.

Referências

Adnane, M., & Chapwanya, A. (2022). Role of Genital Tract Bacteria in Promoting Endometrial Health in Cattle. Microorganisms, 10(11), 2238. https://doi.org/10.3390/microorganisms10112238.

Appiah, M. O., Wang, J., & Lu, W. (2020). Microflora in the Reproductive Tract of Cattle: A Review. Agriculture, 10(6), 232. https://doi.org/10.3390/agriculture10060232

Barba, M., Martínez-Boví, R., Quereda, J. J., Mocé, M. L., Plaza-Dávila, M., Jiménez-Trigos, E., Gómez-Martín, Á., González-Torres, P., Carbonetto, B., & García-Roselló, E. (2020). Vaginal Microbiota Is Stable throughout the Estrous Cycle in Arabian Maress. Animals, 10(11), 2020. https://doi.org/10.3390/ani10112020

Ciabattini, A., Olivieri, R., Lazzeri, E., & Medaglini, D. (2019). Role of the Microbiota in the Modulation of Vaccine Immune Responses. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01305

Husso, A., Jalanka, J., Alipour, M. J., Huhti, P., Kareskoski, M., Pessa-Morikawa, T., Iivanainen, A., & Niku, M. (2020). The composition of the perinatal intestinal microbiota in horse. Scientific reports, 10(1). https://doi.org/10.1038/s41598-019-57003-8

Jamieson, A.M. (2015). Influence of the microbiome on response to vaccination. Human Vaccines & Immunotherapeutics, 11(9), 2329–2331. https://doi.org/10.1080/21645515.2015.1022699.

Jašarević, E., Hill, E. M., Kane, P. J., Rutt, L., Gyles, T., Folts, L., Rock, K. D., Howard, C. D., Morrison, K. E., Ravel, J., & Bale, T. L. (2021). The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nature communications, 12(1). https://doi.org/10.1038/s41467-021-26634-9

Klein-Jöbstl, D., Quijada, N. M., Dzieciol, M., Feldbacher, B., Wagner, M., Drillich, M., Schmitz-Esser, S., & Mann, E. (2019). Microbiota of newborn calves and their mothers reveals possible transfer routes for newborn calves' gastrointestinal microbiota. PloS one, 14(8), e0220554. https://doi.org/10.1371/journal.pone.0220554

Lynn, M. A., Tumes, D. J., Choo, J. M., Sribnaia, A., Blake, S. J., Leong, L. E. X., Young, G. P., Marshall, H. S., Wesselingh, S. L., Rogers, G. B., & Lynn, D. J. (2018). Early-Life Antibiotic-Driven Dysbiosis Leads to Dysregulated Vaccine Immune Responses in Mice. Cell host & microbe, 23(5), 653–660.e5. https://doi.org/10.1016/j.chom.2018.04.009

Malaluang, P., Wilén, E., Frosth, S., Lindahl, J., Hansson, I., & Morrell, J.M. (2022). Vaginal Bacteria in Mares and the Occurrence of Antimicrobial Resistance. Microorganisms, 10(11). https://doi.org/10.3390/microorganisms10112204.

Uchihashi, M., Bergin, I.L., Bassis, C.M., Hashway, S.A., Chai, D., & Bell, J.D. (2015). Influence of age, reproductive cycling status, and menstruation on the vaginal microbiome in baboons (Papio anubis). American Journal of Primatology, 77(5), 563–578. https://doi.org/10.1002/ajp.22378.

Yildirim, S., Yeoman, C. J., Janga, S. C., Thomas, S. M., Ho, M., Leigh, S. R., Primate Microbiome Consortium, White, B. A., Wilson, B. A., & Stumpf, R. M. (2014). Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. The ISME Journal, 8(12), 2431–2444. https://doi.org/10.1038/ismej.2014.90

Zimmermann, P., & Curtis, N. (2018). The influence of the intestinal microbiome on vaccine responses. Vaccine, 36, 4433–4439. https://doi.org/10.1016/j.vaccine.2018.04.

Publicado
2025-03-21
Como Citar
Mataragka, A., Symeonidou, A., Ikonomopoulos, J., Tzimotoudis, N., Diakoudi, G., Lanave, G., Decaro, N., Papakonstantinou, E., & Vlachakis, D. (2025). Next generation sequencing and bio-informatics analysis for the investigation of the vaginal bacterial microflora of clinically healthy mares. Acta Scientiarum. Animal Sciences, 47(1), e70939. https://doi.org/10.4025/actascianimsci.v47i1.70939
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus