Evaluating interventions on broiler chicken health using blood indices and graphical representation

Palavras-chave: immunity; heat stress; feed additive; coenzyme Q10; eubiotic.

Resumo

Heat stress significantly affects the physiological and performance aspects of broiler chickens, leading to reduced growth, feed intake, and feed efficiency. This research investigates the impact of various dietary additives and supplements on blood serum components in heat-stressed Ross 308 broiler chickens. A completely randomized design with eight treatment groups, each with four replications and 12 birds per replication, was used. Significant differences were found in blood parameters such as glucose, total protein, albumin, uric acid, and AST, as well as in heterophil percentage, lymphocyte count, heterophil to lymphocyte ratio, and bronchitis antibody titers (p < 0.05). Dietary interventions also significantly altered the E. coli population in the cecum (p < 0.05). Diets enriched with coenzyme Q10 and vitamin C notably reduced E. coli populations under heat-stress. However, no significant differences were observed in tibia characteristics (p > 0.05). These results demonstrate the effectiveness of feed additives in mitigating heat stress effects in broiler chickens. We recommend incorporating vitamin C, coenzyme Q10, and Eubiotic supplements to enhance the well-being and performance of broiler chickens under heat stress conditions.

Downloads

Não há dados estatísticos.

Referências

Ahmad, R., Yu, Y.-H., Hsiao, F. S.-H., Su, C.-H., Liu, H.-C., Tobin, I., … Cheng, Y.-H. (2022). Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals, 12(17), 2297. DOI: https://doi.org/10.3390/ani12172297

Alizadeh, M., Bavananthasivam, J., Shojadoost, B., Astill, J., Taha-Abdelaziz, K., Alqazlan, N., … Sharif, S. (2021). In ovo and oral administration of probiotic lactobacilli modulate cell- and antibody-mediated immune responses in newly hatched chicks. Frontiers in Immunology, 12, 664387. DOI: https://doi.org/10.3389/fimmu.2021.664387

Ayo, J. O., & Ogbuagu, N. E. (2021). Heat stress, haematology and small intestinal morphology in broiler chickens: insight into impact and antioxidant-induced amelioration. World's Poultry Science Journal, 77(4), 949-968. DOI: https://doi.org/10.1080/00439339.2021.1959279

Babinszky, L., Szabó, C., & Horváth, M. (2021). Perspective chapter: using feed additives to eliminate harmful effects of heat stress in broiler nutrition. Veterinary Medicine and Science. DOI: https://doi.org/10.5772/intechopen.101030

Borges, S., Silva, A. V. F., Majorka, A., Hooge, D. M., & Cummings, K. R. (2004). Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poultry Science, 83(9), 1551-1558. DOI: https://doi.org/10.1093/ps/83.9.1551

Cai, S. J., Wu, C. X., Gong, L. M., Song, T., Wu, H., & Zhang, L. Y. (2012). Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poultry Science, 91(10), 2532-2539. DOI: https://doi.org/10.3382/ps.2012-02160

Feizi, A., Dadian, F., & Asadzadehmajdi, S. (2012). The effect of heat stress on some blood parameters, biochemical values and humoral immunity in broiler chickens. Journal of Veterinary Clinical Pathology, 6(3), 1621-1627.

Feldsine, P., Abeyta, C., & Andrews, W. H. (2002). AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. Journal of AOAC International, 85(5), 1187-1200. DOI: https://doi.org/10.1093/jaoac/85.5.1187

He, S. P., Arowolo, M. A., Medrano, R. F., Li, S., Yu, Q. F., Chen, J., & He, J. H. (2018). Impact of heat stress and nutritional interventions on poultry production. World's Poultry Science Journal, 74(4), 647-664. DOI: https://doi.org/10.1017/S0043933918000727

Hirakawa, R., Nurjanah, S., Furukawa, K., Murai, A., Kikusato, M., Nochi, T., & Toyomizu, M. (2020). Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Frontiers in Veterinary Science, 7, 46. DOI: https://doi.org/10.3389/fvets.2020.00046

Jamali, M. R., Ghorbani, M. R., Tatar, A., Salari, S., & Chaji, M. (2017). Effects of different levels of Purslane powder on microbial populations, blood biochemical parameters and tibia bone characteristics of laying hens. Iranian Veterinary Journal, 12(4), 31-41. DOI: https://doi.org/10.22055/ivj.2017.43013

Johnson, J. O. (2019). Autonomic nervous system: physiology. In H. C. Hemmings Jr. & T. D. Egan (Eds.), Pharmacology and physiology for anesthesia: foundations and clinical application (2nd ed., p. 270-281). Philadelphia, PA: Saunders.

Karimi, N., Ahangari, Y. J., Zerehdaran, S., Akhlaghi, A., Hashemi, S. R., & Adabi, N. A. (2015). Effects of the dietary supplementation of chromium and vitamin C on egg quality traits in heat-stressed Japanese quails (Coturnix cot. japonica). European Poultry Science, 79, 1-8. DOI: https://doi.org/10.1399/eps.2015.113

Kario, K., Bruce, S. M., & Thomas, G. P. (2003). Disasters and the heart: a review of the effects of earthquake-induced stress on cardiovascular disease. Hypertension Research, 26(5), 355-367. DOI: https://doi.org/10.1291/hypres.26.355

Keshavarz, K., & Fuller, H. L. (1980). The influence of widely fluctuating temperatures on heat production and energetic efficiency of broilers. Poultry Science, 59(9), 2121-2128. DOI: https://doi.org/10.3382/ps.0592121

Khan, R. U., Naz, S., Nikousefat, Z., Selvaggi, M., Laudadio, V., & Tufarelli, V. (2012). Effect of ascorbic acid in heat-stressed poultry. World's Poultry Science Journal, 68(3), 477-490. DOI: https://doi.org/10.1017/S004393391200058X

Kim, W. K., Donalson, L. M., Herrera, P., Woodward, C. L., Kubena, L. F., Nisbet, D. J., & Ricke, S. C. (2004). Research note: effects of different bone preparation methods (fresh, dry, and fat-free dry) on bone parameters and the correlations between bone breaking strength and the other bone parameters. Poultry Science, 83(10), 1663-1666. DOI: https://doi.org/10.1093/ps/83.10.1663

Kingsolver, J. G., Diamond, S. E., & Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology, 27(6), 1415-1423. DOI: https://doi.org/10.1111/1365-2435.12145

Li, C., Goncalves, K. A., Raskó, T., Pande, A., Gil, S., Liu, Z., … Lieber, A. (2021). Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Advances, 5(5), 1239-1249. DOI: https://doi.org/10.1182/bloodadvances.2020003714

Li, Z., Wang, W., Liu, D., & Guo, Y. (2018). Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringens. Journal of Animal Science and Biotechnology, 9, 25. DOI: https://doi.org/10.1186/s40104-018-0243-3

Lumeij, J. T. (1997). Avian clinical biochemistry. In J. J. Kaneko, J. W. Harvey, & M. L. Bruss (Eds.), Clinical biochemistry of domestic animals (5th ed., p. 857-883). Academic Press. DOI: https://doi.org/10.1016/B978-012396305-5/50031-2

Metwally, M. M. (2023). Efficacy of different medicinal herbs blends as feed additives on the performance, breast meat composition, nutrient digestibility, tibia bone characteristics and economical evaluation of japanese quail. Egyptian Poultry Science Journal, 43(2), 371-389. DOI: https://doi.org/https://dx.doi.org/10.21608/epsj.2023.305342

National Research Council [NRC]. (2011). Nutrient requirements of fish and shrimp. Washington, DC: The National Academies Press.

Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., … An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131-139. DOI: https://doi.org/10.1016/j.jtherbio.2018.08.010

Nosrati, M., Javandel, F., Camacho, L. M., Khusro, A., Cipriano, M., Seidavi, A., & Salem, A. Z. M. (2017). The effects of antibiotic, probiotic, organic acid, vitamin C, and Echinacea purpurea extract on performance, carcass characteristics, blood chemistry, microbiota, and immunity of broiler chickens. Journal of Applied Poultry Research, 26(2), 295-306. DOI: https://doi.org/10.3382/japr/pfw073

Pratt, D. S., & Kaplan, M. M. (2000). Evaluation of abnormal liver-enzyme results in asymptomatic patients. The New England Journal of Medicine, 342(17), 1266-1271. DOI: https://doi.org/10.1056/NEJM200004273421707

Rao, S. K., West, M. S., Frost, T. J., Orban, J. I., Bryant, M. M., & Roland Sr., D. A. (1993). Sample size required for various methods of assessing bone status in commercial leghorn hens. Poultry Science, 72(2), 229-235. DOI: https://doi.org/10.3382/ps.0720229

Ratriyanto, A., & Mosenthin, R. (2018). Osmoregulatory function of betaine in alleviating heat stress in poultry. Journal of Animal Physiology and Animal Nutrition, 102(6), 1634-1650. DOI: https://doi.org/10.1111/jpn.12990

Righi, C., Menchetti, L., Orlandi, R., Moscati, L., Mancini, S., & Diverio, S. (2019). Welfare assessment in shelter dogs by using physiological and immunological parameters. Animals, 9(6), 340. DOI: https://doi.org/10.3390/ani9060340

Saelao, P., Wang, Y., Gallardo, R. A., Lamont, S. J., Dekkers, J. M., Kelly, T., & Zhou, H. (2018). Novel insights into the host immune response of chicken Harderian gland tissue during Newcastle disease virus infection and heat treatment. BMC Veterinary Research, 14, 280. DOI: https://doi.org/10.1186/s12917-018-1583-0

Sahin, K., Kucuk, O., Sahin, N., & Sari, M. (2002). Effects of vitamin C and vitamin E on lipid peroxidation status, serum hormone, metabolite, and mineral concentrations of Japanese quails reared under heat stress (34º C). International Journal for Vitamin and Nutrition Research, 72(2), 91-100. DOI: https://doi.org/10.1024/0300-9831.72.2.91

Shabani, R., Fakhraei, J., Yarahmadi, H. M., & Seidavi, A. (2020). The effects of various sources of selenium supplements on performance, carcass characteristics, the population of ileum bacteria, blood parameters, liver enzymes, hormonal activities, and antioxidant activities of blood plasma in broiler chickens. Journal of Animal Environment, 12(3), 85-96. DOI: https://doi.org/10.22034/aej.2020.110689

Song, J., Xiao, K., Ke, Y. L., Jiao, L. F., Hu, C. H., Diao, Q. Y., … Zou, X. T. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93(3), 581-588. DOI: https://doi.org/10.3382/ps.2013-03455

Sørum, H., & Sunde, M. (2001). Resistance to antibiotics in the normal flora of animals. Veterinary Research, 32(3-4), 227-241. DOI: https://doi.org/https://dx.doi.org/10.1051/vetres:2001121

Talebi, E., & Ghazanfarpoor, R. (2021). Effect of Nano-selenium particles and sodium selenite on performance, carcass characteristics and antioxidant enzymes of quails under heat stress. Azad University Journals Cloud, 1400(1), 22-34.

Talebi, E., & Khademi, M. (2011). Combination effects of ascorbic acid and glucose in drinking water on the broiler performance under acute heat stress. International Journal of Applied Biology and Pharmaceutical Technology, 2(1), 92-96.

Talebi, E., Dolatkhah, A., & Joyani, M. (2022). The effect of high temperature on poultry and effective factors on reducing the adverse effects of heat stress: a review. Journal of Emerging Trends in Engineering and Applied Sciences, 13(3), 94-100.

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vandana, G. D., Sejian, V., Lees, A. M., Pragna, P., Silpa, M. V., & Maloney, S. K. (2021). Heat stress and poultry production: impact and amelioration. International Journal of Biometeorology, 65(2), 163-179. DOI: https://doi.org/10.1007/s00484-020-02023-7

Vilela, J. S., Andronicos, N. M., Kolakshyapati, M., Hilliar, M., Sibanda, T. Z., Andrew, N. R., … Ruhnke, I. (2021). Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system. Animal Nutrition, 7(3), 695-706. DOI: https://doi.org/10.1016/j.aninu.2020.08.014

Publicado
2024-11-13
Como Citar
Ghaleghafi, A., Khorshidi, K. J., & Jafari , M. A. J. (2024). Evaluating interventions on broiler chicken health using blood indices and graphical representation. Acta Scientiarum. Animal Sciences, 47(1), e71260. https://doi.org/10.4025/actascianimsci.v47i1.71260
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus