Inglês Intake, nutrient digestibility, nitrogen balance, and rumen parameters of Balami, Udah and Yankasa sheep breeds fed Brachiaria decumbens or Digitaria smutsii hay

  • Immanuel Ishaku Madziga Ahmadu Bello University
  • Sadiku Musa Otaru Ahmadu Bello University
  • Cyril Ugochukwu Osuhor Ahmadu Bello University
  • Romilda Rodrigues do Nascimento Universidade Federal de Campina Grande
  • Gildenia Araújo Pereira Universidade Federal de Campina Grande
  • José Morais Pereira Filho Universidade Federal de Campina Grande
  • Leilson Rocha Bezerra Universidade Federal de Campina Grande
  • Clarence Ayodele Mao Lakpini Ahmadu Bello University
Palavras-chave: N-NH3; performance; production; tropical grasses hay; volatile fatty acids.

Resumo

The objective of this experiment was to compare three Nigeria sheep breeds fed Brachiaria decumbens (Stapf) or Digitaria smutsii (Stent) hay for performance, intake, digestibility, and rumen parameters. Each of the three breeds of sheep, which weighed on average 24.7, 25.5, and 25.5 kg (Balami, Uda, and Yankasa, respectively) were assigned to a 2 × 3 completely randomized design. There were significant (p < 0.05) differences among breeds, with Balami and Uda presenting the highest intake, rumen parameters, average daily weight gain (ADG) and final body weight (FBW). Sheep fed D. smutsii hay presented higher (p < 0.05) digestibility, ADG and FBW than those fed B. decumbens hay. Balami and Uda breeds fed D. smutsii had improved rumen pH, VFA production, and N-NH3 production, and consequently had improved digestibility and growth performance when compared to the Yankasa breed fed B. decumbens hay. It is important to note that the effectiveness of different types of forage and the response of different sheep breeds to those forages can vary based on several factors, including the nutritional content of the forage, the age and health of the animals, and environmental conditions.

Downloads

Não há dados estatísticos.

Referências

Abubakr, M. M. (2022). Federal Ministry of Agriculture and Food Security. https://sciencenigeria.com/fg-to-support-northeast-livestock-subsector-with-free-vaccines/

Adu, I. F., & Ngere, L. O. (1979). The indigenous sheep of Nigeria. World Review of Animal Production, 15(3), 51-62.

Allen, M. S. (1997). Relationship between fermentation, acid production in the rumen, and the requirement for physically effective fibre utilisation. Journal of Dairy Science, 80,447-1462. https://doi.org/10.3168/jds. S0022-0302(97)76074-0

Association of Official Analytical Chemistry [AOAC]. (2012). Official Methods of Analysis (19th ed.). AOAC.

Bartocci, S., Amici, A., Verna, M., Terramoccia, S., & Martillotti, F. (1997). Solid and fluidpassage rate in buffalo, cattle, and sheep fed diets with different forage-to-concentrate ratios. Livestock Production Science, 52, 201-208. https://doi.org/10.1016/S0301-6226(97)00132-2

Carvalho, P. H., Pinto, A. C., Millen, D. D., & Felix, T. L. (2020). Effect of cattle breed and basal diet on digesti-bility, rumen bacterial communities, and eating and rumination activity. Journal of Animal Science, 98(5), skaa114. DOI: https://doi.org/10.1093/jas/skaa114

Chelkapally, S. C., Terrill, T. H., Estrada-Reyes, Z. M., Ogunade, I. M., & Pech-Cervantes, A. A. (2023). Effects of dietary inclusion of dry distillers’ grains with solubles on performance, carcass characteristics, and nitro-gen metabolism in meat sheep: a meta-analysis. Frontier Veterinary Sciences, 10, 1141068. https://doi.org/10.3389/fvets.2023.1141068

Dewhurst, R. J., & Newbold, J. R. (2022). Effect of ammonia concentration on rumen microbial protein produc-tion in vitro. British Journal of Nutrition, 127(6), 847-849. https://doi.org/10.1017/S000711452100458X

Franzolin, R., & Dehority, B. A. (1996). Effects of rumen pH and feed intake on defaunation in sheep fed high concentrate diets. Journal of Animal Science, 25, 1207-1215.

Harun, A. Y., & Sali, K. (2019). Factors affecting rumen microbial protein synthesis: A review. Veterinary Medi-cine Open Journal, 4(1), 27-35. https://doi.org/10.17140/VMOJ-4-133

Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., McGee, Nozière, P., Reynolds, C. K., Bayat, A. R., Yáñez-Ruiz, D. R., Dijkstra, J., Kebreab, E., Schwarm A., Shingfield, K. J., & Yu, Z. (2018). Nitro-gen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science, 102, 5811-5852. https://doi.org/10.3168/jds.2018-15829.

Kand, D., Castro-Montoya, J. M., Selje-Assmann, N., & Dickhoefer. U. (2021). The effects of rumen nitrogen balance on intake, nutrient digestibility, chewing activity, and milk yield and composition in dairy cows vary with dietary protein sources. Journal of Daiy Science, 104, 4236-4250. https://doi.org/10.3168/jds.2020-19129

Li., Z., Deng, Q., Liu, Y., Yan, T., Li, F., Cao, Y., & Yao, J. (2018). Dynamics of methanogenesis, ruminal fermenta-tion, and fiber digestibility in ruminants following elimination of protozoa: a meta-analysis. Journal of An-imal Science Biotechnology, 9, 89. https://doi.org/10.1186/s40104-018-0305-6

Lin, X., Ju, L., Cheng, Q., Jiang, Y., Hou, Q., Hu, Z., Wang, Y., & Wang Z. (2023). Comparison of growth perfor-mance and rumen metabolic pathways in sheep and goats under the same feeding pattern. Frontiers in Vet-erinary Science, 10, 1013252. https://doi.org/10.3389/fvets.2023.1013252

Madziga, I. I., Lakpini, C. A. M., Osuhor, C. U., Otaru, S. M., & Anosike, F. U. (2022). Economics analysis of feed-ing Brachiaria decumbens or Digitaria smutsii hay to Balami, Uda, and Yankasa rams. Federal University Dutsin - Ma Journal of Agriculture and Agricultural Technology, 8(1), 323-328.

Macêdo, A. J. da S., Campos, A. C., Coutinho, D. N., Freitas, C. A. S., dos Anjos, A. J., & Bezerra, L. R. (2022). Effect of the diet on ruminal parameters and rumen microbiota: review. Revista Colombiana de Ciencia Animal, 14(1), 886. https://doi.org/10.24188/recia.v14.n1.2022.886

National Research Council [NRC]. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. https://doi.org/10.17226/11654

Osuji, P. U., Nsahlai, I. V., & Khalili, H. (1993). Feed evaluation (ILCA Manual 5). ILCA.

Pereira, G. A., Santos, E. M., de Oliveira, J. S., de Araújo, G. G. L., de Sá Paulino, R., Perazzo, A. F., de Farias Ra-mos, J. P., Neto, J. M. C., de Lima Cruz, G. F., & Leite, G. M. (2021). Intake, nutrient digestibility, nitrogen balance, and microbial protein synthesis in sheep fed spineless-cactus silage and fresh spineless cactus. Small Ruminant Research, 194, 106293. https://doi.org/10.1016/j.smallrumres.2020.10623

Purbowati, E., Lestari, C. M. S., Adiwinarti, R., Restitrisnani, V., Mawati, S., Purnomoadi A., & Rianto, E. (2021). Productivity and carcass characteristics of lambs fed fibrous agricultural wastes to substitute grass. Veteri-nary World Journal, 14(6), 1559-1563. https://doi.org/10.14202/vetworld.2021.1559-1563

Quick, T. C., & Dehority, B. A. (1986). A comparative study of feeding behavior and digestive function in dairy goats, wool sheep, and hair sheep. Journal of Animal Science, 63, 1516 1526. https://doi.org/10.2527/jas1986.6351516x

Ramadhan, M. R., SchІecht, E., Dickhoefer, U., Mahgoub, O., & Joergensen, R. (2022). Feed digestibility, digesta passage, and faecaІ microbiaІ biomass in desert-adapted goats exposed to mild water restriction. Journal of Animal Physiology and Animal Nutrition, 106, 721-732. https://doi.org/10.1111/jpn.13597

Rasi, S., Vainio, M., Blasco, L., Kahala, M., Leskinen, H., & Tampio, E. (2022). Changes in volatile fatty acid pro-duction and microbiome during fermentation of food waste from the hospitality sector. Journal of Environ-mental Management, 308, 114640. https://doi.org/10.1016/j.jenvman.2022.114640

Statistical Analysis System [SAS]. (2003). Release 9.1 for Windows, SAS Institute Inc.

Scanlon, T. T., Almeida, A. M., van Burgel, A., Kilminster, T., Milton, J., Greeff, J. C., & Oldham, C. (2013). Live weight parameters and feed intake in Dorper, Damara, and Australian Merino lambs exposed to restricted feeding. Small Ruminant Research, 109(2-3), 101-106. https://doi.org/10.1016/j.smallrumres.2003.12.007

Silva, A. M., Silva, A. G., Trindade, I. A., Resend, K. T., & Bakke, O. A. (2004). Food intake and digestive efficien-cy in temperate wool and tropical semi-arid hair lambs fed different concentrate: forage ratio diets. Small Ruminant Research, 55, 107-115. https://doi.org/10.1016/j.smallrumres.2003.12.007

Simões, J., Abecia, J. A., Cannas, A., Delgadillo, J. A., Lacasta, D., Voigt, K., & Chemineau, P. (2021). Managing sheep and goats for sustainable high yield production. Animal, 15, 100293. https://doi.org/10.1016/j.animal.2021.100293

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Whitehead, R., Cooke, G. H., & Chapman, B. T. (1976). Automation in analytical chemistry: Technicon symposium (Vol. 2, p. 377). Technicon Instruments Co. LTD.

Wildues, S., Turner, K. E., & Collins, J. R. (2005). Growth Performance of Barbados Blackbelly, Katahdin and St. Croix Hair Sheep Lambs Fed Pasture- or Hay-based Diets. Sheep & Goat Research Journal, 20, 37-41. https://digitalcommons.unl.edu/usdaarsfacpub/458

Publicado
2025-06-06
Como Citar
Madziga, I. I., Otaru, S. M., Osuhor, C. U., Nascimento, R. R. do, Pereira, G. A., Pereira Filho, J. M., Bezerra, L. R., & Lakpini, C. A. M. (2025). Inglês Intake, nutrient digestibility, nitrogen balance, and rumen parameters of Balami, Udah and Yankasa sheep breeds fed Brachiaria decumbens or Digitaria smutsii hay . Acta Scientiarum. Animal Sciences, 47(1), e71560. https://doi.org/10.4025/actascianimsci.v47i1.71560
Seção
Nutrição de Ruminantes

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus