Investigating consequences of non-synonymous Single nucleotide polymorphisms of the Zyxin gene on protein structure and functions in Nigerian indigenous and Nera black chickens Zyxin

  • Adenaike Adeyemi Sunday Federal University of Agriculture / University of Port Harcourt https://orcid.org/0000-0002-9865-6029
  • Peters Sunday Olusola Berry College
  • Fafiolu Adeboye Olusesan , Federal University of Agriculture
  • Waheed Abdullai Adetunji Federal University of Agriculture
  • Abdulrahman Taofeek Aireabakhame Federal University of Agriculture
  • Agaviezor Brilliant Ogagaoghene University of Port Harcourt
  • Agbalaya Khadijah Kubura Lagos State University of Science and Technology
  • Ikeobi Christian Obiora Ndubuisi Federal University of Agriculture
Palavras-chave: Zyxin; chicken coccidiosis; amino acid sequence; non-synonymous SNPs; naked neck chickens; single nucleotide polymorphisms (SNPs); nsSNPs.

Resumo

Zyxin functions as a regulator of the restructuring of the actin cytoskeleton during the process of repairing tissue damage, cell movement and attachment. It has also been identified as a potential gene involved in chicken coccidiosis. In order to gain a deeper understanding of these phenomena, we employed a collection of computer-based techniques and databases to examine the amino acid sequence, structural dynamics, molecular interactions, and activities of the gene. Our analysis revealed that Zyxin contains two non-synonymous SNPs (A > C at position 22 and G > A at position 137) at exon 1. Also, there existed a non-synonymous SNPs in Exon 3 (A>C and A>T both at position 861) of the gene with Synonymous SNPs observed only in exon 3 (A>G at position 812 and 854, T > C at position 863). The genetic diversity revealed in these chicken populations indicates the presence of genetic variation, with Naked neck chickens showing a considerably higher frequency of particular SNPs. Two non-synonymous single nucleotide polymorphisms (nsSNPs) were forecasted to exert a profound influence on the structure, stability, and activities of Zyxin, thereby heightening the vulnerability to coccidiosis.

Downloads

Não há dados estatísticos.

Referências

Adenaike, A. S., Mabunmi, A. O., Takeet, M. I., Adenaike, O. D., & Ikeobi, C. O. (2016). Genetic differences in the body weight and haematological traits of Nigerian indigenous chickens infected with Eimeria tenella. Tropical Animal Health and Production, 48(7), 1443–1447. https://doi.org/10.1007/s11250-016-1114-6

Adenaike, A. S., Peters, S. O., Adeleke, M. A., Fafiolu, A. O., Takeet, M. I., & Ikeobi, C. O. N. (2018). Use of discriminant analysis for the evaluation of coccidiosis resistance parameters in chickens raised in hot humid tropical environment. Tropical Animal Health and Production, 50(5), 1161–1166. https://doi.org/10.1007/s11250-018-1547-1

Adenaike, A.S.,; Peters, S.O.,; Fafiolu, A.O.,; Adeleke, M.A.,; Takeet, M.I.,; Wheto, M.,; Adebambo, O.A., &; Ikeobi, C.O.N. (2019). Genetic Diversity of zyxin and TNFRSF1A genes in Nigerian Local Chickens and Nera Black Chickens. Agriculturae Conspectus Scientificus, 84(3), 305-311.

Ahmad, R., Yu, Y. H., Hua, K. F., Chen, W. J., Zaborski, D., Dybus, A., Hsiao, F. S., & Cheng, Y. H. (2023). Management and control of coccidiosis in poultry: A review. Animal Bioscience, 37, 1–15. https://doi.org/10.5713/ab.23.0189

Ajala, A. O., Ogunjimi, S. I., Famuwagun, O. S., & Adebimpe, A. T. (2021). Poultry production in Nigeria: exploiting its potentials for rural youth empowerment and entrepreneurship. Nigerian Journal of Animal Production, 48, 114–123. https://doi.org/10.51791/njap.v48i1.2890

Alberts, B., Johnson, A., ; Lewis, J.,; Raff, M.,; Roberts, K., &; Walter, P. (2015). Studying Gene Expression and Function. Nih.gov; Garland Science, 2015.

Anthis, N. J., & Clore, G. M. (2013). Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Science, 22(6), 851–858. https://doi.org/10.1002/pro.2253

Chen, S., Wu, J. L., Liang, Y., Tang, Y. G., Song, H. X., Wu, L. L., Xing, Y. F., Yan, N., Li, Y. T., Wang, Z. Y., Xiao, S. J., Lu, X., Chen, S. J., & Lu, M. (2021). Arsenic Trioxide Rescues Structural p53 Mutations through a Cryptic Allosteric Site. Cancer Cell, 39(2), 225–239. https://doi.org/10.1016/j.ccell.2020.11.013

Dai, G., ; Sun, D., ; Sun, M., ; Lin, Y., ; Wang, X., Zhang, G., ; Xie, K., ; Shi, M., ; Olowofeso, O., ; Wang, J. (2014). Study on the relationship between single nucleotide polymorphisms of the coccidiosis-resistance candidate zyxin gene exon 1 and carcass traits in the Jinghai yellow chicken. Turkish Journal of Veterinary & Animal Sciences, 38(2), 121-125.

Gamage, D. G., Gunaratne, A., Periyannan, G. R., & Russell, T. G. (2019). Applicability of Instability Index for In vitro Protein Stability Prediction. Protein and Peptide Letters, 26(5), 339–347. https://doi.org/10.2174/0929866526666190228144219

Heise, H., Crisan, A., & Theuvsen, L. (2015). The poultry market in Nigeria: Market structures and potential for investment in the market. International Food and Agribusiness Management Review, 18, 197-222.https://doi.org/10.22004/ag.econ.207011

Kamani, J., Bwala, F. H., & Weka, P. R. (2021). Coccidiosis: A threat to the poultry industry in Plateau State, Nigeria. Nigerian Journal of Animal Science, 23(1), 80-85.

Kotb, A., Hyndman, M. E., & Patel, T. R. (2018). The role of zyxin in regulation of malignancies. Heliyon, 4(7), e00695. https://doi.org/10.1016/j.heliyon.2018.e00695

Lawal, J. R., Jajere, S. M., Ibrahim, U. I., Geidam, Y. A., Gulani, I. A., Musa, G., & Ibekwe, B. U. (2016). Prevalence of coccidiosis among village and exotic breed of chickens in Maiduguri, Nigeria. Veterinary World, 9(6), 653–659. https://doi.org/10.14202/vetworld.2016.653-659

Li, B., Yang, Y. T., Capra, J. A., & Gerstein, M. B. (2020). Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PLoS Computational Biology, 16(11), e1008291. https://doi.org/10.1371/journal.pcbi.1008291

Lim, S. W., Tan, K. J., Azuraidi, O. M., Sathiya, M., Lim, E. C., Lai, K. S., Yap, W. S., & Afizan, N. A. R. N. M. (2021). Functional and structural analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the MYB oncoproteins associated with human cancer. Scientific Reports, 11. https://doi.org/10.1038/s41598-021-03624-x

Mesa-Pineda, C., Navarro-Ruíz, J. L., López-Osorio, S., Chaparro-Gutiérrez, J. J., & Gómez-Osorio, L. M. (2021). Chicken Coccidiosis: From the Parasite Lifecycle to Control of the Disease. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.787653

Novák, P., & Havlíček, V. (2016). Protein extraction and precipitation. In Proteomic profiling and analytical chemistry (pp. 51–62). Elsevier. https://doi.org/10.1016/B978-0-444-63688-1.00004-5

Olutumise, A. I., Oladayo, T. O., Oparinde, L. O., Ajibefun, I. A., Amos, T. T., Hosu, Y. S., & Alimi, I. (2023). Determinants of health management practices’ utilization and its effect on poultry farmers’ income in Ondo State, Nigeria. Sustainability, 15(3), https://doi.org/10.3390/su15032298

Ozturk, K., & Carter, H. (2022). Predicting functional consequences of mutations using molecular interaction network features. Human Genetics, 141(6), 1195–1210. https://doi.org/10.1007/s00439-021-02329-5

Padjasek, M., Kocyła, A., Kluska, K., Kerber, O., Tran, J. B., & Krężel, A. (2020). Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. Journal of Inorganic Biochemistry, 204. https://doi.org/10.1016/j.jinorgbio.2019.110955

Rashid, M., Akbar, H., Bakhsh, A., Rashid, M. I., Hassan, M. A., Ullah, R., Hussain, T., Manzoor, S., & Yin, H. (2019). Assessing the prevalence and economic significance of coccidiosis individually and in combination with concurrent infections in Pakistani commercial poultry farms. Poultry Science, 98(3), 1167–1175. https://doi.org/10.3382/ps/pey522

Siddiqui, M. Q., Badmalia, M. D., & Patel, T. R. (2021). Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052647

Svitkina T. (2018). The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harbor Perspectives in Biology, 10(1), a018267. https://doi.org/10.1101/cshperspect.a018267

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., & von Mering, C. (2015). STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43(D1), D447–D452. https://doi.org/10.1093/nar/gku1003

Wang, G., & Fersht, A. R. (2017). Multisite aggregation of p53 and implications for drug rescue. Proceedings of the National Academy of Sciences of the United States of America, 114(13), E2634–E2643. https://doi.org/10.1073/pnas.1700308114

Wang, H., Zhong, H., Gao, C., Zang, J., & Yang, D. (2021). The Distinct Properties of the Consecutive Disordered Regions Inside or Outside Protein Domains and Their Functional Significance. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910677

Wang, Y. X., Wang, D. Y., Guo, Y. C., & Guo, J. (2019). Zyxin: a mechanotransductor to regulate gene expression. European Review for Medical and Pharmacological Sciences, 23(1), 413–425. https://doi.org/10.26355/eurrev_201901_16790

Xue, V. W., Chung, J. Y., Córdoba, C. A. G., Cheung, A. H., Kang, W., Lam, E. W., Leung, K. T., To, K. F., Lan, H. Y., & Tang, P. M. (2020). Transforming Growth Factor-β: A Multifunctional Regulator of Cancer Immunity. Cancers, 12(11). https://doi.org/10.3390/cancers12113099

Zampiga, M., Flees, J., Meluzzi, A., Dridi, S., & Sirri, F. (2018). Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. Journal of Animal Science and Biotechnology, 9. https://doi.org/10.1186/s40104-018-0278-5

Zhang, S., Chong, L. H., Woon, J. Y. X., Chua, T. X., Cheruba, E., Yip, A. K., Li, H. Y., Chiam, K.-H., & Koh, C.-G. (2023). Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Communications Biology, 6. https://doi.org/10.1038/s42003-023-04421-0

Publicado
2025-03-24
Como Citar
Sunday, A. A., Olusola, P. S., Olusesan, F. A., Adetunji, W. A., Aireabakhame, A. T., Ogagaoghene, A. B., Kubura, A. K., & Ndubuisi, I. C. O. (2025). Investigating consequences of non-synonymous Single nucleotide polymorphisms of the Zyxin gene on protein structure and functions in Nigerian indigenous and Nera black chickens Zyxin. Acta Scientiarum. Animal Sciences, 47(1), e71608. https://doi.org/10.4025/actascianimsci.v47i1.71608
Seção
Produção Animal

0.9
2019CiteScore
 
 
29th percentile
Powered by  Scopus