Problems of classification of South American Proteocephalids (Cestoda). On a new classification for the group

Amilcar Arandas Rego

Departamento de Helmintologia, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil. e-mail: arego@joc.fiocruz.br

ABSTRACT. The taxonomy of the Order Proteocephalidea, parasites of freshwater fishes, amphibia and reptilia, is being reapraised. The taxa of proteocephalids parasitizing fishes from South American rivers are evaluated on utilizing morphological characters, with the help of phylogenetic systematics. The Woodland's classification divides the South American proteocephalids into two groups, Proteocephalidae and Monticellidae, depending on the position of vitellaria and gonads in medullar or cortical parenchyma of proglottids. With the intention to propose modifications in the classification, we discuss the trees that resulted from phylogenetic analysis. The conclusions are that the actual taxonomy of the group, based on the papers of Woodland (1933-1935), can not be supported by these analyses; consequently, it is suggested the supression of Monticellidae and its subfamilies. It is accepted only one family, Proteocephalidae, with five subfamilies: Proteocephalinae Mola, 1929, Corallobothriinae Freze, 1965, Sandonelliinae Khalil, 1960, Gangesiinae Mola, 1929 and Acanthotaeniinae Freze, 1963. The monticellid species were transferred to Corallobothriinae or Proteocephalinae, depending on the presence or not of a metascolex.

Key words: Cestoda, Proteocephalidea, taxonomy, phylogenetic systematic.

RESUMO. Problemas na classificação dos Proteocefalídeos (Cestoda) da América do Sul. Uma nova classificação para o grupo. É discutida a classificação da Ordem Proteocephalidea, Cestóides, cujas espécies são parasitas de peixes de água doce, anfíbios e répteis. Os proteocefalídeos que parasitam os peixes da América do Sul são reavaliados por meio de análises filogenéticas, utilizando caracteres morfológicos. A classificação de Woodland divide a Ordem Proteocephalidea em dois grupos, Proteocephalidae e Monticellidae, se houver os vitelinos e ou as gônadas na medula ou no córtex do parênquima dos proglótides. Foram obtidas algumas árvores de gêneros e espécies e os resultados não validam a classificação baseada em Woodland (1933-1935); em conseqüência, é proposta a supressão da família Monticelliidae e suas subfamílias. É aceito apenas uma família Proteocephalidae Mola, 1929, com cinco subfamílias: Proteocephalinae Mola, 1929, Corallobothriinae Freze, 1965, Sandonelliinae Khalil, 1960, Gangesiinae Mola, 1929 and Acanthotaeniinae Freze, 1963. Os gêneros de monticelídeos são transferidos para Corrallobothriinae ou Proteocephalinae, se estes possuírem ou não um metaescolex.

Palavras-chave: Cestoda, Proteocephalidea, taxonomia, sistemática filogenética.

Introduction

Cestodes of the order Proteocephalidea (Mola, 1928) inhabit freshwater fishes but also parasitize, but in less degree, Amphibia and Reptilia. Recently, a species parasite of the Mammalian *Didelphis marsupialis* was described from Mexico (Cañeda-Guzman *et al.*, 1999), an amazing finding because proteocephalides were not yet recovered from homeoterms.

The primary hosts of proteocephalids are siluriform fishes, whose species are found in every Continent, except in Australia.

life-cycles of South American proteocephalids are unknown except for some references to the finding of cysticercoid-like larvae in the peritoneum and liver of freshwater fishes, and hyperparasitism of these cysticercoids proteocephalids strobilae (Rego and Gibson, 1989). The recent finding of proteocephalid larvae in freshwater copepods in the Paraná river, Brazil (data not published), points to these invertebrates as the first intermediate hosts; fishes are the second intermediate hosts that hosts the plerocercoid, but with a form of a cysticercoid-like, a innovation in the types of larvae in proteocephalids; the

proteocephalids from Amphibia for instance have procercoids and pelrocercoids, similar to the Tetraphyllidea.

Paratenic hosts also have an important role in the life-cycles of proteocephalideans.

Morphologically, the proteocephalids are characterized by the scolex with acetabula, the same kind of suckers found in terrestrial Cyclophyllidea, but differing from them by the reproductive organs, but especially the vitellaria lateral, that is more closely related to the Tetraphyllidea and other marine Orders. Differently from the Palearctic forms, whose species are more uniform (ex. *Proteocephalus*), the South American proteocephalids are very polymorphic, the forms of scolex and the disposition of gonads in cortex and medulla vary greatly.

The first tentative of re-organizing the Order, utilizing phylogenetic analyses, was conducted by Brooks (1978), and in subsequent papers, Brooks and Deardorff (1980), Brooks and Rasmussen (1984) and Brooks (1995). Unfortunately, the interpretations presented by Brooks and co-workers were limited by a shortage of reliable and complete data for many South American genera, with the results that many taxa were not resolved in the cladogram presented.

Zehnder and Mariaux (1999) utilized two ribossomal DNA sequences to infer phylogenetic relationships among the Proteocephalidea; as a result, they stated: "The monophyly of the Order Proteocephalidea is supported; however, neither of the two families as currently conceived, the Proteocephalidae and Monticellidae appears as a natural group, both are paraphyletic. Moreover, the monophyly of most subfamilies (of Monticellidae) is not supported in our analysis".

Material and methods

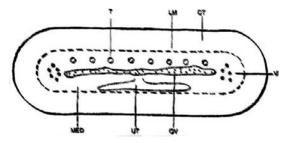
Relationships among proteocephalideans genera/species were analyzed using phylogenetic systematics. Morphological characters were analyzed with the program "Phylogenetic Analysis Using Parsimony", Version 3.05 (PAUP).

The analysis was based on critical observations of features in most proteocephalidean species studied by Rego, Rego *et al.*, Pavanelli *et al.*, and Chambrier *et al.*, (see references). Results of the studies of extensive material of proteocephalids from Amazon and Paraguay. In addition, some voucher specimens, specially species from other Continents have been examined.

Characters used in the analysis were derived mainly from comparative morphological and

taxonomix studies of the present author. In some groups, we relied on morphological data derived from the extensive literature.

Results and discussion


Excepting the papers of Diesing (1850, 1854) Monticelli (1892) and La Rue (1911,1914), the bulk of papers on this group, specialty of South American fauna, were published by Woodland (1925, 1933 a, b, c-1935 a, b, c). Recently, the proteocephalids are being largely scrutinized by Rego (1984, 1987, 1989, 1990, 1991, 1992. 1994, 1995), Rego *et al.* (1995, 1998, 1989, 2001, 1985, 1987, 1990, 1992a, 1992b, 1999), Pavanelli and Rego (1989, 1991, 1992), Pavanelli and Santos (1992), Pavanelli and Takemoto (1991), Pavanelli *et al.* (1994), Chambrier and Rego (1994, 1995).

However, the knowledge of the South American proteocephalids resulted incomplete, as less than one hundred proteocephalid species were described from about seventy fish host species. There are a presumible fauna of two thousand fishes species in rivers; there American are proteocephalids taxa to be described consequently it exists gaps in the knowledge of the group. To note however, that many of the old species were incompletely described, resulting that some species are not distinguished from each other in the basis of the known characters.

As mentioned earlier, in recent years (loc.cit.) a quantity of papers have appeared describing new forms of proteocephalids from South America; it resulted that to the anteriorly described monotypic genera were added new species.

Until Woodland (decade of 30′) less than 50 proteocephalid species were known from South America, and it is not surprising the great quantity of monotypic genera he described. In fact, there are many genera with few species. It differs from the Palearctic and Nearctic forms, with few genera with many species (ex. *Proteocephalus*).

classification of South proteocephalids is now controversial. Many authors prefer to mantain the classifications of Woodland (1933-1935) and Freze (1965), this last author accepted two families, Proteocephalidea and Monticelliidae in the Order Proteocephalidea. These families differing on the disposition of vitellaria and reproductives organs, ovary, testes and uterus, disposed in the medullar parenchyma (Proteocephalidae) or in the cortex, total ou partly (Monticelliidae), this one with the subfamilies: Zygobothriinae, Rudolphielliinae, Ephedrocephalinae. Othinoscolecinae Monticelliinae (Figures 1-8).

Figure 1. Proteocephalus (section, schematic): T = testes; LM = longitudinal muscles; CT = cortical parenchyma; V = vitellaria; MED = medula; UT = uterus; OV = ovary

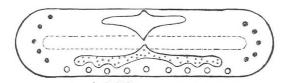


Figure 2. Monticellia: vitelaria and reproductive organs entirely cortical

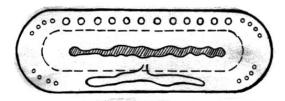


Figure 3. Othinoscolex: only ovary medullar

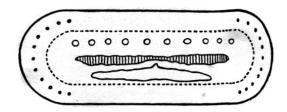


Figure 4. Nomimoscloex: vitellaria cortical; reproductive organs medullar

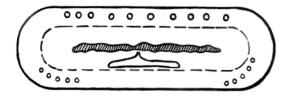


Figure 5. Ephedrocephalus: ovary and uterus medullar; testes and vitellaria cortical

Rego (1995) criticized the classification of the South American proteocephalids; he stated that: "The scheme of Woodland was useful for decades,

but with the discovery of new forms, with intermediate characters between the proteocephalids and monticelliids, it reduced the value of the arrangement of vitellaria and gonads in the cortical parenchyma, as characteristically distinctive". An example of the difficulty to utilize this classification could be the problem of *Nupelia portoriquensis* Pavanelli and Rego, 1991, in this species, the reproductive organs and vitelline follicles are situated partly in the medulla and partly in the cortex (Figure 7), making it impossible to establish the subfamily (sensu Woodland) to the species they belong to.

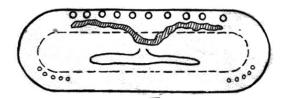
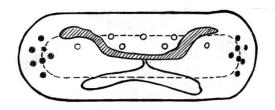
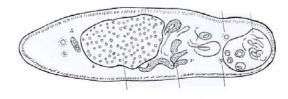




Figure 6. Rudolphiella: uterus medullary; ovary partly medullar; testes cortical; vitellaria in ventral cortex

Figure 7. *Nupelia*: vitellaria and reproductive organs partly cortical partly medullar (vitellaria paramuscular).

Figure 8. *Travassiela*: Longitudinal musculature inconspicua; impossible to define the position cortical or medullar of gonadas and vitellaria.

Rego *et al.*, (1998) as a result of the 2nd Workshop of Tapeworms in Nebraska, published a cladistic analysis based on comparative morphology to examine the subfamily relationships within the Order Proteocephalidea. Unfortunately, the analysis started from the pre-existing families and it is not surprising that the results confirmed the "status quo", i. é, the conservative scheme of Woodland-Freze (loc.cit.).

Characters:

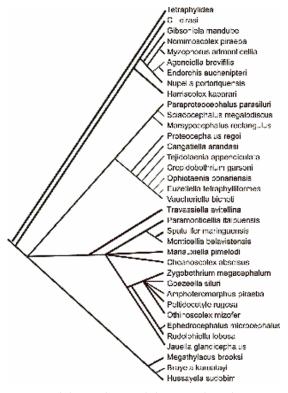
- 1. Position of viteline follicles. Three states: 0 = medullar; 1 = cortical; 2 = paramuscular.
- 2. Distribution of vitelline follicles(cross-section). Three states: 0 = lateral bands, or crescent-shaped; 1 = only ventral bands; 2 = in two bands, dorsal and ventral.
- 3. Distribution of vitelline follicles. Three states: 0 = equally distributed along lateral fields; 1 = distributed along lateral fields, but not anteriorly to the level of genital pore. 2 = along lateral fields, but more concentrated towards ovary (L-shaped).
- 4. Position of vitellaria relatively to longitudinal osmoregularoy canals. Three states: 0 = externally; 1 = internal; 2 = both (some follicles internal, some external).
- 5. Position of ovary. 4 states: 0 = medullary; 1 = origin in medulla, but developing to cortex; 2 = cortical; 3 = origin in cortex, but developing to medulla.
- Form of ovary. Two states: 0 = biwinged, with delicate follicles; 1 = bilobate, more or less massive.
- 7. Position of testes. Three states: 0 = medullary; 1 = cortical; 2 = paramuscular.
- 8. Distribution of testes. Three states: 0= in a single field, continuous; = in two fields, connected anteriorly; 2= in two separate fields.
- 9. Position of uterus. Four states: 0 = medullar; 1 = cortical; 2 = originated in medulla, but outgrowths penetrating the cortex; 3 = originated in cortex, but outgrowths penetrating the medulla.
- 10. Shape of uterus. Three states: 0 = tubular, with few development of diverticula; 1 = tubular, with numerous diverticula; 2 = tubular, with diverticula, but later split in egg sacs.
- 11. Appearance of uterus (anlagen). Two states: 0 = in mature segments; 1 = in immature segments (preformed).
- 12. Uterine wall. Two states: 0 = thin wall; 1 = thick wall.
- 13. Eggs morphology. Two states: 0 = eggs with filaments, or with polar structures; 1 = eggs round or oval without filaments or polar structures.
- 14. Embryonation of eggs when laid. Two states: 0 = embryonated, with visible hooks: 1 = unembryonated, hooks not visible.

- 15. Genital pore. Two states: 0 = alternating regularly or irregularly; 1 = tendence to be unilateral.
- 16. Opening of vagina relatively to cirrus pouch. Three states: 0 = anterior; 1 = posterior; 2 = anterior or posterior in the same strobila.
- 17. Vaginal sphincter. Two states: 0 = inconspicuous or absent; 1 = conspicuous.
- 18. Shape of mature proglottids. Three states: 0 = longer than wide: 1 = more or less square/quadrate; 2 = wider than long.
- 19. Tegumental wrinkles on strobila. Two states: 0 = absent; 1 = present.
- 20. Velum or laciniae. Two states: 0 = present (craspedote); 1 = absent (acraspedote).
- 21. Disposition of longitudinal musculature of parenchyma. Two states: 0 = isolated fibres/diffuse fibres: 1 = bundles of fibres.
- 22. Development of longitudinal musculature of parenchyma. Two states: 0 = well developed, with bundles of fibres; 1 = weakly developed/inconspicuous.
- 23. Neck. Two states: 0 = conspicuous; 1 = inconspicuous/ very small.
- 24. Metascolex. Two states: 0 = absent; 1 = present.
- 25. Development of metascolex. Two states: 0 = well developed, numerous folds, "collar-like"; 1 = other forms, not "collar-like".
- 26. Apical muscular sucker. Two states: 0 = absent; 1 = present.
- 27. Frontal apical glands on scolex. Two states: 0 = absent; 1 = present.
- 28. Suckers shape. Two states: 0 = more or less spherical; 1 = other forms.
- 29. Sucker cavities. Five states: 0 = one cavity, simple; 1 = one cavity, but notched, heart-shaped; 2 = one cavity, two openings; 3 = two cavities, biloculate; 4 = three cavities, triloculate.
- 30. Suckers disposition. Two states: 0 = external, visible/ not sessil; 1 = internal, sac-like, appearing as holes.
- 31. Spination of suckers (microtriches). Two states: 0 = absent; 1 = present.
- 32. Auriculae or other projections of suckers. Two states: 0 = absent; 1 = present.
- 33. Distal sphincter on suckers. Two states: 0 = absent; 1 = present.
- 34. Types of hosts. Three states: 0 = fish; 1 = Amphibian; 2 = Reptilia.

Table 1. Character matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Ophiotaenia	0	0	0	0	0	1	0	2	0	1	0	0	1	0	0	2	1	0	0	1	0	1	0	0	-	0	1	0	0	0	0	0	0	1
bonariensis																																		i
Tejidotaenia	0	0	0	0	0	1	0	1	0	1	0	0	1	0	0	2	1	0	0	1	1	0	1	0	-	0	0	1	0	0	0	0	0	2
appendiculata																																		i
Proteocephalus regoi	0	0	0	2	0	1	0	1	0	1	1	0	1	0	0	1	0	2	0	1	1	0	0	0	-	0	1	0	0	0	0	0	0	0
Crepidobothrium	0	0	0	0	0	1	0	2	0	1	1	0	1	0	0	2	0	0	0	1	1	0	0	0	-	0	1	0	1	0	0	0	0	2
earsoni																																		i
C.eirasi	2	0	1	0	0	0	0	0	0	1	1	0	1	0	0	2	0	1	0	0	1	1	0	0	-	0	0	0	1	0	0	0	0	0
Travassiella avitellina	1	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	2	0	1	0	1	0	0	_	0	0	0	0	0	0	0	0	0
Fuzetiella	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	0	-	0	1	1	0	0	0	0	0	0
tetraphylliformes	0	Ü	Ü	Ü	Ů		Ü	1			0	Ü	1	0		0	1	Ü	Ü		Ü	1	0	Ů	_	Ü			ľ	Ů				Ŭ
Brayela karuatayi	0	0	0	0	0	0	0	2	0	0	0	1	1	1	0	0	0	2	0	1	1	0	0	0	_	0	0	0	3	0	0	0	0	0
Gibsoniela mandube	2	0	0	0	1	1	0	0	0	1	1	0	1	0	0	0	0	1	1	1	1	0	0	0	_	0	0	0	4	0	0	0	0	0
Monticellia	1	0	0	0	2	1	1	0	1	1	0	0	1	0	0	0	1	1	0	1	1	0	0	0	-	0	0	0	0	0	0	0	0	0
lvionticellia belavistensis	1	U	U	U	_	1	1	U	1	1	U	U	1	U	U	U	1	1	U	1	1	U	U	U	-	U	U	U	U	U	U	U	U	U
Nomimoscolex	2	0	0	0	1	1	0	0	3	1	1	0	1	0	0	2	1	2	0	1	1	0	0	0	_	0	1	0	0	0	1	0	0	0
Piraeeba	_	U	U	U	1	1	0	U	,	1	1	U	1	U	U	_	1	_	U	1	1	U	U	U	-	U	1	U	U	U	1	U	U	0
Myzophorus	1	0	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	0	0	1	0	1	0	0	_	0	1	0	0	0	0	0	0	0
admonticellia		Ŭ	Ü			1	ľ	ľ	ľ	١.	ľ	Ŭ	١.	1 1		ľ	1	Ŭ	Ü	1	Ŭ			ľ	-	Ŭ	l *	ľ	ľ	ľ	ľ	Ü	ľ	ľ
Ageneiella brevifilis	1	0	2	0	3	1	1	0	3	1	0	0	1	0	0	0	0	0	0	1	1	0	1	0	-	0	0	1	3	0	0	0	0	0
Endorchis auchenipteri	1	2	0	0	1	1	0	0	3	1	0	0	0	0	0	0	1	1	0	1	1	0	0	1	1	0	1	0	3	0	0	0	0	0
Vaucheriella bicheti	1	1	1	0	0	0	0	2	0	0	1	0	1	0	0	1	1	0	0	1	0	1	0	0	_	0	1	0	0	0	0	0	0	2
Zygobothrium	1	2	2	2	0	0	0	0	0	1	0	0	1	1	0	2	1	2	1	0	1	0	1	0	-	0	0	0	2	0	0	0	1	0
megacephalum		-	_	-	Ů		Ü	0			0	Ü	1	1		_	1	-				U		Ů	_	Ü	0	Ŭ	-	Ů			1	Ŭ
Hussavela sudobim	2	0	0	0	0	0	0	2	0	1	0	0	1	1	0	0	0	2	0	1	1	0	0	0	_	0	0	0	0	0	0	1	0	0
Harriscolex kaparari	2	2	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	1	0	1	1	0	0	0	_	0	0	0	0	0	0	1	0	0
Nupelia portoriquensis	2	0	0	0	1	1	2	0	3	1	0	1	0	0	0	0	0	1	0	1	1	0	0	0	-	0	0	0	0	0	0	0	0	0
Cangatiella arandasi	2	1	0	1	0	1	0	1	2	1	0	0	0	?	0	2	0	0	1	1	1	0	0	0	_	0	0	0	0	0	0	0	0	0
Megathylacus	0	0	2	0	0	1	0	2	0	1	0	0	0	1	0	0	0	2	0	1	1	0	0	1	1	0	0	0	0	1	0	0	1	0
Spatulifer maringaensis	1	1	0	0	2	1	1	0	1	1	0	0	0	0	0	0	1	1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Goezeella siluri	1	1	2	2	1	0	1	0	1	1	0	0	0	1	0	0	1	2	1	1	1	0	1	1	0	0	0	1	3	0	0	0	0	0
Paramonticellia	1	0	2	0	3	1	1	0	1	1	0	0	1	0	0	0	0	1	0	1	1	0	0	1	1	0	0	0	0	1	0	0	0	0
itaipuensis	1	U	_	U	,	1	1	0	1	1	0	U	1	0	U	0	0	1	U	1	1	U	U		1	U	0	0	0	'	0	U	0	0
Mariauxiella pimelodi	1	0	0	0	1	1	1	0	3	1	1	1	1	1	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	1	0
Choanoscolex abscisus	1	0	0	0	2	1	1	0	1	1	0	0	1	1	0	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0
Amphoteromorphus	1	2	2	2	0	1	0	0	0	1	0	1	0	0	0/1	0	1	2	1	1	1	0	1	1	0	0	0	1	3	0	0	0	0	0
Amphoteromorphus Peltidocotyle rugosa	1	2	2	0	0	1	1	0	1	1	0	0	1	1	0/1	0	1	2	1	1	1	0	1	1	0	0	0	1	3	0	0	0	0	0
Othinoscolex	1	_	0	2	0	1	1	0	1	0	0	0	1	1	0	0	1	2	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
(syn.:Woodlandiella)	1	2	U		U	1	1	U	1	U	U	U	1	1	U	U	1	2	1	1	1	U	1	1	U	U	U	U	U	U	U	U	U	U
(syn.:woodiandiella) Jauella glandicephalus	1	2	0	0	0	1	1	0	2	1	0	0	1	1	0	0	0	2	0	1	1	0	0	1	1	0	1	0	0	0	0	0	0	0
Ephedrocephalus	1	1	0	2	0	1	1	0	0	1	0	0	0	1	0	?	0	2	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
Epnedrocephalus microcephalus	1	1	U	_	U	1	1	U	U	1	U	U	U	1	U	;	U	_	1	1	1	U	1	1	U	U	U	U	U	U	U	U	U	U
Sciadocephalus	0	0	0	0	0	1	0	2	0	2	1	0	1	1	0	2	0	2	1	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
	U	U	U	U	U	1	U		U	2	1	U	1	1	U	2	U	2	1	1	U	1	1	1	1	1	U	U	U	U	U	U	U	U
megalodiscus	1	1	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
Rudolphiella	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	2	0	2			1	0	1	0	0	0	0	0	0	0	0	0	1	0
Marsypocephalus	U	U	U	U	U	1	1	U	U	1	U	U	1	0	U	2	U	2	1	1	1	U	1	U	-	U	0	0	0	0	U	U	1	U
rectangulus							l			l			l			l														l				i l
(African)	0	0	0		0	0/1	0	0/1	0/1	0	0	0	00	0	0	0	0/1	0	0	0/1	0/1	0/1	0	0/1	?	0	0	1	0/4	0	0	_	0	0
Tetraphyllidea (OUTGROUP)	U	0	U	0	U	U/I	U	0/1	U/I	U	U	U	0/2	0	U	U	0/1	U	U	U/I	O/ I	U/I	0	0/1	٦	U	U	1	0/4	U	U	0	0	U
(OUTGROUP)		_	_		<u> </u>	Щ.	<u> </u>			Щ.			Щ.		Щ.	Щ.			_	<u> </u>	Щ.	ш	<u> </u>	<u> </u>				<u> </u>	Щ.					لــا

Cladistic analysis


Thirty-four characters were identified in the thirty-five taxa included in the analysis, represented by Thirty-three South American species and two species from other Continents, *Paraproteocephalus parasiluri* and *Marsypocephalus rectangulus*. One of the resulting trees (Figure 9) with 176 steps and level of consistence, CI = 0,34, demonstrated the existence of homoplasies to several characters and groups of taxa. This preliminary analysis produced a large number of equally parsimonius trees, a strict consensus of which failed to support the current classification.

We think that the difficulties in resolving relationships exists as expected, since the proteocephalids of South America have undergone a high degree of morphological diversification. The diversification has resulted in a large number of taxa characterized by what appears to be autopomorphies

that cannot be linked evolutionarily. As well, as in many cestode groups, the parallelism associated with many other characters adds difficulty to the task of uncovering relationships in an objective manner.

The results of the phylogenetic analyses of the group does not validate the actual classication of the Proteocephalids. There is no justification to isolate a Monticellidae family, to place the genera that exhibit migration of vitellaria and, or gonads to the cortex. However, these characters are considered very important at the level of genera". Consequently, he accepted only one family, Proteocephalidae, and suggested the elimmination of Monticellidae and its subfamilies. The genera of Monticellidae were transferred Corallobothriinae Proteocephalinae, depending on the presence or not of a metascolex. The subfamilies Sandonelliinae, Gangesiinae and Acanthotaeniina are mantained, because they have sufficient characteristics to

distinguish them from the other taxa. The Marsypocephalinae Woodland, 1933 is supressed for unnecessary and the genus *Marsypocephalus* Wedl, 1861 is transferred to Proteocephalinae.

Figure 9. Cladogram showing phylogenetic relationships among South American protecephalid genera. Most of the taxa are not resolved

As stated by Rego (1999): "Morphological characteristics of metascolex and scolex, that include frontal (apical) glands, apical sucker, appendices of suckers and spines or microtriches, could provide more precise data in order to separate genera and subfamilies rank in the Order Proteocephalidea"

The classification is a provisional one, it is possible that in the future, discoveries of new forms of proteocephalids, and a better knowledge of the life-cycle of South American and African species could carry out modification in this scheme.

References

BROOKS, D.R. Evolutionary history of the cestode order Proteocephalidea. *Syst. Zool.*, Washington, DC, v. 27, p. 312-323, 1978.

BROOKS, D.R. Phylogenetic hypothesis, cladistic diagnoses, and classification of the Monticelliidae (Eucestoda: proteocephaliformes). *Rev. Bras. Biol.*, Rio de Janeiro, v. 55, p. 359-367, 1995.

BROOKS, D.R.; DEARDORFF, T.L. Three proteocephalid cestodes from Columbian siluriform fishes, including *Nomimoscolex alovarius* sp.n. (Monticellidae: Zygobothriinae). *Proc. Helminthol. Soc. Wash.*, Lawrence, v. 47, p. 15-21, 1980.

BROOKS, D.R.; RASMUSSEN, G. Proteocephalidean cestodes from Venezuelan siluriform fishes with a revised classification of the Monticellidae. *Proc. Biol. Soc. Wash.*, Lawrence, v. 97, p. 748-760, 1984.

CAÑEDA-GUZMAN, I.C. et al. Thaumasioscolex didelphidis n. gen., n. sp. (Eucestoda: Proteocephalidae) from the black-eared opossum Didelphis marsupialis from Mexico, the first proteocephalid tapeworm from a mammal. J. Parasit., Lawrence, v. 87, n. 3, p. 639-646, 1999

CHAMBRIER, A.; REGO, A.A. *Proteocephalus sophiae* n.sp. (Cestoda: Proteocephalidae), a parasite of the siluroid fish *Paulicea luetkeni* (Pisces: Pimelodidae) from the Brazilian Amazon. *Rev. Suisse Zool.*, Geneve, v. 101, p. 361-368, 1994.

CHAMBRIER, A.; REGO, A.A. *Mariauxiella pimelodi* n. g., n. sp. (Cestoda: Monticelliidae): a parasite of pimelodid siluroid fish from South America. *Syst. Parasitol.*, Washington, DC, v. 30, p. 57-65, 1995.

CHAMBRIER, A.; VAUCHER, C. Etude morphoanatomique et génétique de deux nouveau *Proteocephalus* Weinland, 1858 (Cestoda: Proteocephalidae) parasites de *Platydoras costatus* (L.), poisson siluriforme du Paraguay. *Syst. Parasitol.*, Washington, DC, v. 27, p. 173-185, 1994.

CHAMBRIER, A. et al. Tapeworms (Cestoda: Proteocephalidea) of Hoplias malabaricus (Pisces: Characiformes, Erythrinidae) in Paraguay: description of Proteocephalus regoi sp.n., and redescription of Nomimoscolex matogrossensis. Folia Parasitol., Prague, v. 43, p. 133-140, 1996

CHAMBRIER, A.; VAUCHER, C. Révision des Cestodes (Monticelliidae) décrits pour Woodland (1934) chez *Brachyplatystoma filamentosum* avec redefinition des generes *Endorchis* et *Nomimoscolex*. *Syst. Parasitol.*, Washington, DC, v. 37, p. 219-233, 1997.

DIESING, K.M. Systema Helminthum. Vindobonae, Wilhelmum Braumüller, v. 1, p. 171-185, 1850.

DIESING, K.M. Über eine naturgemässe Vertheilung der Cephalocotyleen. Sitzungsberichte der Kaiserlichen Akad. der Wissenschaften. Mathematisch-Naturwiss. Classe 13, p. 556-616. 1854.

FREZE, V.I. Essentials of cestodology. Proteocephalata, in fish, amphibians and reptiles. Jerusalem, Israel Program of Scientific Translations, v. 5, 597 pp, 1965.

LA RUE, G.R. A revision of the cestode family Proteocephalidae. *Zool. Anz.*, Dresden, v. 38, p. 473-482, 1911.

LA RUE, G.R. A revision of the cestode family Proteocephalidae. *Ill. Biol. Monogr.*, v.1, p. 1-350, 1914.

MONTICELLI, S. Notizie su di alcune specie di *Taenia*. *Boll. Soc. Nat. Napoli*, Napoli, v. 5, p. 151-174, 1892.

PAVANELLI, G.C.; REGO, A.A. Novas espécies de proteocefalídeos (Cestoda) de *Hemisorubin platyrhynchos*

(Pisces-Pimelodidae) do Estado do Paraná. Rev. Bras. Biol., Rio de Janeiro, v. 49, 381-386, 1989.

PAVANELLI, G.C.; REGO, A.A. Cestóides proteocefalídeos de *Surubim lima* (Schneider, 1801) (Pisces-Pimelodidae) do rio Paraná e reservatório de Itaipu. *Rev. Bras. Biol.*, Rio de Janeiro, v. 51, p. 7-12, 1991.

PAVANELLI, G.C.; REGO, A.A. Megathylacus travassosi sp. n. and Nomimoscolex sudobim Woodland, 1935 (Cestoda - Proteocephalidea) parasites of Pseudoplatystoma corruscans (Agassiz, 1829) (Siluriformes - Pimelodidae) from the Itaipu reservoir and Paraná river, Paraná state, Brazil. Mem. Inst. Oswaldo Cruz, v. 87 (suppl. I), p. 191-195, 1992.

PAVANELLI, G.C.; SANTOS, M.H.M. Goezeella agostinhoi sp.n. e Monticellia loyolai sp.n., cestoides proteocephalídeos parasitas de peixes pimelodideos do rio Paraná, Paraná, Brazil. Rev. Bras. Parasitol. Vet., São Paulo, v. 1, p. 45-50, 1992.

PAVANELLI, G.C.; TAKEMOTO, R.M. New species of *Proteocephalus* (Cestoda - Proteocephalidae) parasitic in fishes from the Paraná River, Paraná, Brazil. *Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, v. 90, p. 593-596, 1995.

PAVANELLI, G.C.; TAKEMOTO, R.M. Spasskyellina mandi n. sp. (Proteocephalidae: Monticelliidae), parasite of *Pimelodus ornatus* Kner, 1857 (Pisces: Pimelodidae) of the Paraná River, Paraná, Brazil. *Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, v. 91, p. 723-726, 1996.

PAVANELLI, G.C. et al. Uma nova espécie de cestóide proteocefalídeo, Monticellia belavistensis sp.n. parasita de Pterodoras granulosus (Val.) (Pisces, Doradidae) do reservatório de Itaipu, rio Paraná, Brazil. Rev. Bras. Biol., Rio de Janeiro, v. 11, p. 587-595, 1994.

REGO, A.A. Proteocefalídeos (Cestoda) de *Phractocephalus hemiliopterus*, peixe da Amazonia. *Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, v. 79, p. 257-261. 1984.

REGO, A.A. Cestóides proteocefalídeos do Brasil. Reorganização taxonômica. *Rev. Bras. Biol.*, Rio de Janeiro, v. 47: 203-212, 1987.

REGO, A.A. Cestóides proteocefalídeos de "cachara", *Pseudoplatystoma fasciatus* (L.) (Pisces, Pimelodidae) de Mato Grosso. *Mem. Inst. Oswaldo Cruz*, v. 84 (suppl. IV), p. 455-461, 1989.

REGO, A.A. Cestóides proteocefalídeos parasitas de pintado, *Pseudoplatystoma corruscans* (Agassiz) (Pisces, Pimelodidae). *Ciênc. Cult.*, São Paulo, v. 42, p. 997-1002, 1990.

REGO, A.A. Redescription of *Nomimoscolex piraeeba* Woodland, 1934 (Cestoda, Proteocephalidea), from the Amazon catfishes, *Brachyplatystoma* spp. with proposal of synonyms and invalidation of Endorchiinae and *Endorchis. Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, v. 86, p. 229-232, 1991.

REGO, A.A. Redescription of *Gibsoniela mandube* (Woodland, 1935)(Cestoda: Proteocephalidea), a parasite of *Ageneiosus brevifilis* (Pisces: Siluriformes), and a reappraisal of the classification of the proteocephalideans. *Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, v. 87, p. 417-422, 1992.

REGO, A.A. Order Proteocephalidea Mola, 1928, p. 257-293. *In:* KHALIL, L.F. *et al.* (Ed.). *Keys to the cestode parasites of vertebrates.* St Albans: CAB International, pp.751, 1994.

REGO, A.A. A new classification of the cestode Order Proteocephalidea Mola. *Rev. Bras. Zool.*, Curitiba, v. 12, 791-814, 1995.

REGO, A.A.; CHAMBRIER, A DE. Crepidobothrium eirasi n. sp. (Cestoda: Proteocephalidae), a parasite of the siluroid fish *Phractocephalus hemiliopterus* (Schneider, 1801) (Pisces: Pimelodidae) from the Brazilian Amazon. *Rev. Suisse Zool.*, v. 102, p. 3-11, 1995.

REGO, A.A. *et al.* Preliminary phylogenetic analysis of subfamilies of the Proteocephalidea (Eucestoda). *Syst. Parasitol.*, Washington, DC, v. 40: 1-19, 1998.

REGO, A.A.; GIBSON, D.I. Hyperparasitism by helminths: new records of cestodes and nematodes in proteocephalid cestodes from South American siluriform fishes. *Mem. Inst. Oswaldo Cruz*, Rio de Janeiro, 84, p. 371-376, 1989.

REGO, A.A.; IVANOV, V. Pseudocrepidobothrium eirasi (Rego and de Chambrier, 1995) gen. N. and comb.n. (Cestoda, Proteocephalidea) parasite of a South American freshwater fish, and comparative cladisitic analysis with Crepidobothrium spp. Acta Scientiarum, Maringá, v. 23, n. 2, p.363-367, 2001.

REGO, A.A.; PAVANELLI, G.C. Jauella glandicephalus gen. n. sp. n. e Megathylacus brooksi sp.n., cestóides proteocefalídeos patogênicos para o jaú, Paulicea luetkeni, peixe pimelodídeo. Rev. Bras. Biol., Rio de Janeiro, v.. 45, p. 643-652, 1985.

REGO, A.A.; PAVANELLI, G.C. Cestóides proteocefalídeos do jaú, *Paulicea luetkeni*, peixe pimelodídeo do Brasil. *Rev. Brasil. Biol.*, Rio de Janeiro, v. 47, p. 357-361, 1987.

REGO, A.A.; PAVANELLI, G.C. Novas espécies de cestóides proteocefalídeos parasitas de peixes não siluriformes. *Rev. Bras. Biol.*, Rio de Janeiro, v. 50, p. 91-101, 1990.

REGO, A.A.; PAVANELLI, G.C. Redescrição de *Nomimoscolex admonticellia* (Woodland), comb. n. (Cestoda: Proteocephalidea), parasito de *Pinirampus pirinampu* (Spix), um siluriforme de água doce. *Rev. Bras. Zool.*, Curitiba, v. 9,p. 283-289, 1992a.

REGO, A.A.; PAVANELLI, G.C. Checklist of the cestode order Proteocephalidea parasites from South America freshwater fishes. *Revista Unimar*, Maringá, v. 14, p. 109-137, 1992b.

REGO, A.A.; PAVANELLI, G.C. The metascolex in proteocephalids. *Acta Scientiarum*, Maringá, v.21, n. 2, p. 247-254, 1999.

WOODLAND, W.N.F. On some remarkable new *Monticellia*-like and other cestodes from Sudanese siluroids. Q. J. Microsc.Sci., Cambridge, v. 69, p. 703-729, 1925

WOODLAND, W.N.F. On the anatomy of some fish cestodes described by Diesing from the Amazon. Q. J. Microsc. Sci., Cambridge, v. 76, p. 175-208, 1933a.

WOODLAND, W.N.F. On two new cestodes from the Amazon siluroid fish *Brachyplatystoma vaillanti* Cuv. and Val. *Parasitology*, Cambridge, v. 25, p. 485-490, 1933b.

WOODLAND, W.N.F. On a new subfamily of proteocephalid cestodes - the Othinoscolecinae - from the Amazon siluroid fish *Platystomatichthys sturio* (Kner). *Parasitology*, Cambridge, v. 25, p. 491-500, 1933c.

WOODLAND, W.N.F. On the Amphilaphorchidinae, a new subfamily of proteocephalid cestodes, and *Myzophorus admonticellia*, gen. et sp.n., parasitic in *Pirinampus* spp. from the Amazon. *Parasitology*, Cambridge, v. 26, p. 141-149, 1934a.

WOODLAND, W.N.F. On some remarkable new cestodes from the Amazon siluroid fish, *Brachyplatystoma filamentosum* (Lichtenstein). *Parasitology*, Cambridge, v. 26, p. 268-277, 1934b.

WOODLAND, W.N.F. On six new cestodes from Amazon fishes. *Proc. Zool. Soc. Lond.*, London, v. 104, p. 33-44, 1934c.

WOODLAND, W.N.F. Additional cestodes from the Amazon siluroids pirarará, dorad and sudobím. *Proc. Zool. Soc. Lond.*, London, v. 104, p. 851-862, 1935a.

WOODLAND, W.N.F. Some more remarkable cestodes from Amazon siluroid fish. *Parasitology*, Cambridge, v. 27, p. 207-225, 1935b.

WOODLAND, W.N.F. Some new proteocephalids and a ptychobothriid (Cestoda) from the Amazon. *Proc. Zool. Soc. Lond.*, London, v. 105, p. 619-623, 1935c.

ZEHNDER, M.P.; MARIAUX, J. Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. *International Journal Parasitology*, v. 29, p. 1841-1852. 1999.

Received on June 24, 2002. Accepted on February 24, 2003.