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ABSTRACT. Serratia marcescens is a Gram-negative bacillus, anaerobic facultative belonging to the family 
Enterobacteriaceae. S. marcescens strains are able to grow in the presence of different xenobiotic compounds, 
among them, petroleum and heavy metals. Xenobiotic resistant strains develop concomitant resistance to 
multiple antibiotics, referred to as co-resistance. The AMS212 strain was submitted to the microplate 
qualitative DCPIP - redox 2,6 dichlorophenol indophenol method. The quantitative test was carried out in 
Erlenmeyer flasks, followed by the change of color with the absorbance readings, trough the colorimetric 
method. The antibiotic resistance profile was evaluated by the Kirby-Bauer method. In the qualitative 
assay, the AMS212 strain altered the color of the DCPIP, which changed from blue to colorless, 
confirming that petroleum biodegradation occurred. In the quantitative test, the readings were decreasing, 
confirming that the concentration of DCPIP decreased as a function of the incubation time. The 
susceptibility test revealed that the AMS212 strain presented multiresistance to four different antibiotics. S. 
marcescens presented high performance in the biodegradation of petroleum, opening possibility to use it in 
projects involving the remediation of impacted areas. The expression of the antibiotic co-resistance 
phenotype confirms that the AMS212 strain is able to withstand different environmental aggressions. 
Keywords: biodegradation, characterization, DCPIP, antimicrobial resistance. 

Biodegradação do petróleo e corresistência a antibióticos por Serratia marcescens isolada 
em Coari, Amazonas 

RESUMO. Serratia marcescens é um bacilo Gram-negativo, anaeróbio facultativo, pertencente à família 
Enterobacteriaceae. Linhagens de S. marcescens são capazes de crescer na presença de diferentes compostos 
xenobióticos, dentre eles, petróleo e metais pesados. Linhagens resistentes a xenobióticos desenvolvem 
concomitante resistência a múltiplos antibióticos, denominada corresistência. A linhagem AMS212 foi 
submetida ao método colorimétrico com indicador DCPIP - redox 2,6 diclorofenol indofenol, qualitativo, 
em microplacas. O teste quantitativo foi realizado em frascos Erlenmeyer, acompanhando-se a mudança de 
coloração, com as leituras das absorbâncias. Avaliou-se o perfil de resistência a antibióticos pelo método de 
Kirby-Bauer. No ensaio qualitativo, a linhagem AMS212 alterou a cor do DCPIP, que passou de azul para 
incolor, confirmando que ocorreu biodegradação do petróleo. No teste quantitativo, as leituras foram 
decrescentes, confirmando que a concentração do DCPIP diminuiu em função do tempo de incubação. O teste 
de susceptibilidade revelou que a linhagem AMS212 apresenta multirresistência a quatro antibióticos diferentes. 
S. marcescens apresentou alto desempenho na biodegradação do petróleo, abrindo possibilidade de utilizá-la em 
projetos envolvendo a remediação de áreas impactadas. A expressão do fenótipo de corresistência a antibióticos 
confirma que a linhagem AMS212 é capaz de resistir a diferentes agressões ambientais. 
Palavras-chave: biodegradação, caracterização, DCPIP, resistência a antimicrobianos.  

Introduction 

Bacteria from Serratia genus, Enterobacteriaceae 
family, are characterized as Gram-negative, 
facultative anaerobic and chemotrophic bacilli 
(Hejazi & Falkiner, 1997; Carvalho et al., 2010). 
They  are  cosmopolitan  bacteria  (Ashelford,  Fry, 

Bailey, & Day, 2002), and may be isolated from the 
aquatic environments, petroleum, animals, 
including humans and plants (Grimont & Grimont, 
1992; Ashelford et al., 2002). 

Serratia species have been described in the 
literature as being able to grow in environments 
containing petroleum hydrocarbons (Rojas et al., 
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2002; Wongsa et al., 2004; Ortega-González et al, 
2013), and in environments saturated with heavy 
metals (Alzubaidy, 2012; Silva et al., 2012; 
Ibrahim, Syed, Shukor, & Ahmad, 2014). The S. 
marcescens specie has been reported as the most 
important Serratia species due to its ability to 
produce compounds, like prodigiosin, a natural 
red pigment, Serrawettina, a biotensoative that 
gives it adherence in the process of colonization 
of surfaces, and also enzymes, like as proteases, 
nucleases, lipases, chitinases, benzonases and 
cloroperoxidases (Montaner et al., 2000; Pérez-
Tomás, Montaner, Llagostera, & Soto-cerrato, 
2003; Morohoshi et al., 2007; Kalivoda  
et al., 2010). Due to the metabolic capacity of S. 
marcescens strains to degrade petroleum, these 
strains have been used alone or in microbial 
consortia, aiming at the recovery of environments 
impacted by petroleum spills and derivatives 
(Wongsa et al., 2004; Ortega-González et al., 
2013; Silva et al., 2015).  

Serratia marcescens is able to survive in inhospitable 
environments, presenting resistance to antiseptics, 
disinfectants and antibiotics (Aucken & Pitt, 1998; Doi 
et al., 2004; Iguchi et al., 2014). The ability to 
metabolize different xenobiotics, produce bioactive 
compounds as well as colonize different environments 
are among the characteristics that gives to this species 
multiple abilities and a great biotechnological and 
commercial potential. In this context, the present 
research aimed to study S. marcescens AMS212 bacterial 
strain isolated from the aquatic environment around 
the Urucu Petroleum Base, Coari - Amazonas and to 
test its potential to degrade petroleum, and to evaluate 
its antimicrobial resistance profile. 

Material and methods 

Area of study, enrichment and isolation  

The study area comprises the natural stream  
(S 04°51’40.4” / W 065°17’52.7”), located near the 
Urucu, Coari, Amazonas-Brazil Petroleum Base. For 
isolating the strain, 10 mL of the water sample were 
incubated in Erlenmeyer flasks of 250 mL with 90 mL 
of Bushnell Haas (BH) broth (Difco™) commercial 
medium; 1% of raw petroleum as the source of carbon. 
The samples were in orbital shaker (Thermo 
Scientific™ MaxQ™ 4000), 180 rpm min.-1, 30°C, 
during 21 days. Isolation of the microorganism 
consisted in the use of commercial BH agar containing 
petroleum as the sole source of carbon. The pure 
culture was transferred to commercial tryptic soy agar - 
TSA (Difco™). The petroleum used in the 
experiments came from the Petroleum Province of 

Coari and was previously sterilized by the filtration 
method in millipore® 0.22μm. The AMS212 strain is 
deposited in the bacterial genetics laboratory of the 
Universidade Federal do Amazonas-UFAM. 

Preparation of bacterial inoculum 

The inoculum was previously cultured in Nutrient 
broth (HIMEDIA) at 30°C for 12 hours at 180 rpm in 
an orbital shaker (Thermo Scientific ™ MaxQ ™ 
4000). Cells were centrifuged for 10 min., washed with 
saline solution (0.9%) and standardized in a UV-VIS 
(Thermo spectronic Biomate 3) spectrophotometer at 
600nm and D.O = 1 (109 cells mL-1). 

Biodegradability test  

Qualitative analysis 

The qualitative analysis of petroleum 
biodegradability was carried out in sterile multiwell 
(24 wells) microplates, incubated at 30°C. The 
DCPIP redox indicator [0.01 g L-1] was dissolved in 
sterile BH broth (Himedia). The evaluations were 
performed every 12 hours until the color change of 
the medium occurred. The test was performed as 
described by Hanson, Desai, and Desai, (1993) and 
Bidoia, Montagnolli, and Lopes (2010), with 
adaptations. The assay was assembled in triplicate, 
according to Table 1. 

Quantitative analysis 

The quantitative analysis was conducted in 250 
mL Erlenmeyer flasks, in triplicate, incubated at 
30°C at 180 rpm in an orbital shaker (Thermo 
Scientific ™ MaxQ ™ 4000). Aliquots of 1 mL of the 
culture were collected to read the absorbance at 
600nm in a UV-VIS spectrophotometer (Thermo 
spectronic Biomate 3) at 24, 48, 72 hour intervals. 
For this test, the DCPIP solution was prepared in 
the concentration of 1 g L-1 in sterile BH medium 
(Hanson et al., 1993; Bidoia et al., 2010, with 
adaptations). Table 1 shows the composition of this 
assay. 

The quantitative evaluation was performed by 
reading the absorbance, converted to mg of DCPIP, 
using the standard curve (R2 = 0.9998) (Figure 1), 
following Equation 1: [DCPIP] = (Abs.600 + 
0.0037) / 0.154. Where: [DCPIP] = concentration 
of redox indicator DCPIP in mg L-1; and Abs.600 = 
absorbance of the sample at wavelength 600nm. The 
standard curve was drawn from five dilutions of the 
DCPIP indicator in BH broth. Thus, absorbance 
readings were performed at 600nm UV-VIS 
spectrophotometer (Thermo spectronic Biomate 3) 
as shown in Table 3. 
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Table 1. Composition of qualitative test. 

Test Composition  DCPIP [0.01 g L-1] Petroleum AMS212 BH 
Control 1 DCPIP+BH 1.5 mL - - 2.5 μL 
Control 2 DCPIP+BH+Petroleum 1.5 mL 10 μL - 2.5 μL 
Inoculum DCPIP+Petroleum+AMS212 1.5 mL 10 μL 25 μL - 

Table 2. Composition of the quantitative assay. 

Test Composition BH DCPIP Petroleum AMS212 H2O 
Control 0 BH 90.000 mL - - - 10.000 mL 
Control 1 BH + DCPIP 90.000 mL 4.761 mL - - 5.239 mL 
Control 2 BH+DCPIP+Petroleum 90.000 mL 4.761 mL 0.595 mL - 4.644 mL 
Control 3 BH+DCPIP+AMS212 90.000 mL 4.761 mL - 2.380 mL 2.859 mL 
Inoculum BH+DCPIP+Petroleum+AMS212 90.000 mL 4.761 mL 0.595 mL 2.380 mL 2.264 mL 

Table 3. Absorbance readings at 600nm and dilutions of DCPIP redox indicator. 

Erlenmeyer Flasks 
Volumes (mL) [DCPIP] Abs.600 nm 

BH DCPIP [1 g L-1] H2O (mg L-1) u.a 
0 90.000 0.000 10.000 0.000 0.0000 
1 90.000 0.595 9.405 5.950 0.0880 
2 90.000 1.190 8.810 11.900 0.1730 
3 90.000 2.380 7.620 23.800 0.3620 
4 90.000 3.571 6.429 35.710 0.5490 
5 90.000 4.761 5.239 47.610 0.7270 
 

 

Figure 1. Standard curve - [DCPIP]. 

Antimicrobial sensitivity test 

The sensitivity profile of the AMS212 strain 
was evaluated by the Kirby and Bauer method 
(Bauer, Perry, & Kirby, 1960) using pre-loaded 
antibiotic disks (Laborclin®) according to the 
manufacturer's instructions. The susceptibility of 
the AMS212 strain was evaluated against the 
antibiotics: ampicillin (AMP), amikacin (AMI), 
amoxicillin plus clavulanate (AMC), ceftazidime 
(CAZ), cefepime (CPM), cefoxitin (CFO), 
cefuroxima (CRX), ciprofloxacin (CIP), 
gentamicin (GEN), meropenem (MER), 
cephalothin (CFL) and sulfazotrim (SUT). The 
antimicrobial susceptibility test was performed in 
duplicate. Escherichia coli ATCC strain was used 
as negative control. 

Phenotypical characterization 

The bacterial isolate AMS212 was characterized 
morphologically and submitted to the biochemical 
screening system of enterobacteria (Newprov®) 

which allowed to identify the microorganism at the 
specie level, based on Bergey’s Manual of 
Determinative Bacteriology (Holt, Krieg, Sneath, 
Staley, & Williams, 1994). 

Amplification and sequencing of rRNA 16S g ene 

Genomic DNA from the AMS212 bacterium 
was extracted with PureLink™ Genomic DNA Mini 
Kit, (Invitrogen™) according to the manufacturer's 
instructions. The amplification reaction was 
performed by using primers 530F 
(5’TGACTGACTGAGTGCCA 
GCMGCCGCGG3’) and 1495R (5’TGA CTG 
ACTGAGAGCTCTACCTTGTTA3’). The total 
reaction volume was 25 μL containing (2.5 μL 
MgCl2 [25 mM], 2.5 μL dNTPs [2.5 mM]; 2.0 μL 
of each primer [5 pMol μL-1]; 0.3 μL of Taq DNA 
Polymerase [5 U μL-1]; 2.5 μL of 10X buffer). In 
vitro amplification of the sequences belonging to the 
rRNA 16S gene was conducted on the thermal 
cycler (Thermal Cycler, Veriti® 96-Well - Applied 
Biosystems). The amplification was conducted in 
Thermal Cycler, Veriti® 96-Well - Applied 
Biosystems, covering 35 cycles. The thermal profile 
of the PCR reaction consisted of the initial 
denaturation cycle at 95oC for 1 minute; 95oC for 40 
seconds, primer annealing at 58oC for 40 seconds 
and polymerization at 72oC for 40 seconds (35 
cycles); and a final extension step at 72oC for 7 
minutes. For the amplicon sequencing, BigDye® 
Terminator v3.1 sequencing kit was used in a 
capillary sequencer (model 3500 ABI PRISM® 
Genetic Analyzer, Applied Biosystems®).  
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Phylogenetic analysis 

The sequences generated were treated in the 
phred/phrap (Ewing & Green, 1998) for removal of 
low quality bases, then only sequences with quality 
> 20. The analyzes were carried out at the 
bioinformatics site of the Universidade de Brasília 
available at http://www.biomol.unb.br/phph/, 
and then analyzed in the BLASTn program of 
the National Center for Biotechnology 
Information – NCBI (Altschul,  Gish,  Miller, 
Myers, & Lipman, 1990). The phylogenetic 
analysis was made based on the evolutionary 
distances calculated by the Neighbor-Joining and 
Jukes-Cantor algorithms, using the MEGA 7.0 
program (Saitou & Nei, 1987; Jukes & Cantor, 
1969). After the construction of the phylogenetic 
tree, it is possible to determine the taxonomic 
position of the isolate in relation to the species 
whose corresponding sequences were obtained 
in NCBI (Felsenstein, 1985; Kumar, Stecher, & 
Tamura, 2016). 

Results and discussion 

The biodegradability test using the DCPIP 
redox indicator showed the potential of the 
AMS212 strain in using petroleum as a carbon 
source. The biodegradation was evinced through 
the chemical reactions undergone by the DCPIP 
during the microbial oxidation of the 
hydrocarbons. The qualitative analysis showed 
visually that the bacterial strain AMS212 was able 
to alter the coloration of the (oxidized) blue to 
colorless (reduced) medium after 16 hours of 
incubation. The quantitative analysis performed 
by absorbance reading showed a decline in the 
DCPIP concentration. The AMS212 inoculum 
demonstrated a reduction in DCPIP 
concentration over controls over the 24-hour 
period (Figure 2). The lack of carbon source in 
the control (3) showed a low reduction in DCPIP 
concentration due to low microbial activity in this 
assay (Table 4). It has been observed that after 48 
hours, there was an increase in the concentration 
of DCPIP. According to Bidoia et al. (2010), 
DCPIP is a reversible indicator, returning to its 
original coloration after reduction occurs. 

Mariano, Bonotto, De Angelis, Pirôllo, and 
Contiero, (2008) evaluated the rate of 
biodegradation of diesel and biodiesel by the 
colorimetric method with the redox indicator 
DCPIP, establishing the final time of the 
experiment by altering the color of the medium, 
from blue (oxidized) to colorless (reduced). 

Varjani and Upasani (2013), when assessing the 
hydrocarbon degradation by a bacterial 
consortium, recorded the lowest discoloration 
time of the medium in 120 hours, out of a total of 
144 hours. The selection of degrading 
microorganisms using DCPIP has been a trend 
and its efficacy has been proved by different 
authors (Hanson et al., 1993, Mariano et al., 2008, 
Bidoia et al., 2010, Luz et al., 2011). The species 
S. marcescens has been described as degrading the 
most diverse types of petroleum hydrocarbons 
and derivatives (De La Fuente, Perestelo, 
Rodriguez-Perez, & Falcon, 1991; Ijah, 1998; 
Wongsa et al., 2004; Jaysree, Rajam, & Rajendran, 
2015). Wongsa et al., 2004, emphasizes that the S. 
marcescens species is capable of degrading a broad 
spectrum of hydrocarbons, mainly aromatic 
compounds, however, the authors also found the 
degradation of long chain alkanes. De La Fuente 
et al. (1991) reports the ability of S. marcescens to 
oxidize aromatic aldehyde compounds. 

The antimicrobial susceptibility profile 
showed that the AMS212 strain was sensitive to 
most of the antibiotics tested, including amikacin 
(AMI), ceftazidime (CAZ), cefepime (CPM), 
cefoxitin (CFO), ciprofloxacin (CIP), gentamicin 
(GEN), meropenem (MER) and sulfazotrim 
(SUT), and was resistant to ampicillin (AMP), 
cefuroxime (CRX), cephalothin (CFL), with 
particular resistance to amoxicillin plus 
clavulanate (AMC) confirming the Beta 
Lactamase of Extended Spectrum (ESBL) (Figure 
3). The problem of multiresistance to antibiotics 
worldwide in bacterial populations of medical 
importance has led the international scientific 
community to consider some factors predisposing 
to the increase of bacterial strains resistant to 
these antimicrobials (Nikaido, 2009; Singer, 
Shaw, Rhodes, & Hart, 2016). 
 

 
Figure 2. Concentration of DCPIP as a function of time. 
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Table 4. DCPIP Concentrations. 

Time h-1 Control 1 Control 2 Control 3 AMS212 
0 57.97 57.77 57.06 53.60 
24 55.89 52.97 49.33 17.60 
48 52.38 50.82 47.77 13.08 
72 51.02 48.16 44.85 21.13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Among the factors that may favor a greater 
dispersion of antimicrobial resistance genes, 
environmental contamination by toxic compounds, 
such as petroleum and other xenobiotics, tends to 
select bacterial strains capable of surviving high 
concentrations of these cytotoxic compounds 
(Kümmerer, 2004; Davies & Davies, 2010; Manaia, 
Macedo, Fatta-Kassinos, & Nunes, 2016). Moreover, 
these bacterial strains capable of metabolizing 
xenobiotics develop co-resistance to one or more 
antibiotics (Owolabi, & Hekeu, 2014; Thompson, 
Maani, Lindell, King, & McArthur, 2007), becoming 
reservoirs of antibiotic resistance genes (Manaia et al., 
2016). There are reports in the scientific literature 
which correlate the ability of strains of S. marcescens, 
recognized as opportunistic pathogen, to resist the 
presence of heavy metals and biocides, with 
concomitant multiresistance to antibiotics (Jafarzade, 
Mohamad, Usup, & Ahmad, 2012; Nageswaran, 
Ramteke, Verma, & Pandey, 2012). However, the 
present study correlates the metabolic capacity of the 
AMS212 S. marcescens strain to degrade petroleum, 
expressing multiresistance to four different antibiotics, 
including the ESBL. 

The morphological characterization of the strain 
was made with Gram's staining, allowing the 
AMS212 strain to be identified as a Gram-negative 
bacillus. In the biochemical tests, the strain AMS212 
was negative in the tests of oxidase, L-Triptofano 
desaminase, hydrogen sulfide, urease, and indole; 
ferments glucose, but not producing gas; not 
ferments lactose; was positive for motility, lysine 
decarboxylase, and Simmons’ citrate. The tests 
allowed identifying the AMS212 strain as belonging 
to the S. marcescens species. Although environmental 
isolates of the species S. marcenscens have been 
described in the literature as producers of red 
pigment prodigiosin (Grimont & Grimont, 1984, 
Hejazi & Falkiner, 1997), AMS212 strain identified 
in this study did not express prodigiosin production. 
According to Grimont and Grimont (1984) the 
ability to produce prodigiosin is characteristic of the 
S. marcescens species, however, the function of this 

pigment is still unknown, because clinical isolates 
are rarely pigmented. It can be deduced that the fact 
that the strain isolated in this study did not produce 
prodigiosin is related to the cultivation conditions, 
such as availability of carbon and nitrogen sources, 
temperature, pH, oxygenation, and luminosity, as 
suggested by the authors Rjazantseva, Andreeva, and 
Ogorodnikova, (1994) and Hejazi and Falkiner, 
(1997). Among other factors that may have 
contributed to the non-expression of prodigiosin by 
the S. marcescens AMS212 isolate, the strain was 
submitted to the mineral medium enriched with 
petroleum as the only source of carbon and energy, 
which may have caused stress to prevent it from 
expressing the red pigment. Kim, Lee, and Yim 
(2009) report that the synthesis of prodigiosin in S. 
marcescens is related to the availability of inorganic 
salts such as sodium chloride, glycerol as carbon 
source and ammonium salts as a source of nitrogen. 

The amplification and sequencing of the rRNA 
16S gene confirmed the identification of the AMS212 
strain, after submission of the nucleotide sequences to 
the BLASTn (Basic Local Alignment Search Tool) 
program, as belonging to S. marcescens specie with 99% 
identity and Query cover 100% compared to S. 
marcescens strain NBRC 102204 16S ribosomal RNA 
gene available in the GenBank. The nucleotide 
sequence was deposited in GenBank database as S. 
marcescens AMS212 under accession number 
KX686744. Phylogenetic analysis to confirm the 
taxonomic position of the strain was performed in the 
MEGA 7.0 program (Felsenstein, 1985; Kumar, 
Stecher, & Tamura, 2016), aligning the rRNA 16S 
gene sequence of the isolated S. marcescens AMS212 
strain (KX686744), along with nine other of rRNA 16S 
gene of different species of Serratia genus obtained in 
the Genbank. Phylogenetic analysis demonstrated on 
this study is the sequence S. marcescens AMS212, 
grouped with the sequence belonging to the S. 
marcescens species (288779640_AJ233427.1) available in 
the GenBank - NCBI, presenting 100% bootstrap, when 
compared with the sequences of other species 
belonging to Serratia genus, as shown in Figure 2 
(Saitou & Nei, 1987). 
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Figure 3. Antimicrobial activity profile of isolated S. marcescens AMS212. E.coli was used as control. 

 

 
Figure 4. Phylogenetic tree showing the taxonomic location of AMS212 strain. The phylogenetic dendrogram was built by using 
Neighbor-Joining method, based on sequences from gene region rRNA 16S. Values of bootstrap determined for 1000 repetitions are 
shown at the ramifications nodes. 

Conclusion 

The S. marcescens AMS212 strain, in the 
quantitative analysis, decreased the concentration of 
DCPIP, confirming the metabolic capacity of this 
strain to biodegrade the petroleum. The evaluation 
of biodegradability using the DCPIP molecule has 
proved to be an effective method in the search for 
new bacterial strains with potential to degrade 
petroleum. In the antimicrobial susceptibility test, S. 
marcescens expressed multiresistance profile to four 
different antibiotics, confirming co-resistance with 
petroleum. The AMS212 strain demonstrated 
biodegradability potential and could be used in 
future biotechnologies for the remediation of 
contaminated environments. 
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