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ABSTRACT. Endophytic microorganisms live inside the plants without causing any damage to their 

hosts. In the agricultural field, these endophytes might be a strategy of biological control for 

phytopathogens. We aimed to isolate endophytic fungi from yellow passion fruit (Passiflora edulis) leaves, 

evaluating its biocontrol capacity by in vitro antagonism against phytopathogen Colletotrichum sp. 

CNPU378. We also carried out greenhouse experiments in bean seedlings. A high colonization frequency 

was obtained (89%), and the molecular identification based on DNA sequencing attested Colletotrichum as 

the most frequent genus and minor occurrence of Curvularia endophytes. The endophytes tested showed 

different types of competitive interactions in in vitro antagonism inhibition rate ranging from 28.8 to 

48.8%. There were 10 promising antagonists tested for their antagonist activity of crude extracts of 

secondary metabolites, in which strain PE-36 (20.8%) stood out among the other strains evaluated. In the 

greenhouse assay, plants inoculated only with endophyte Colletotrichum sp. PE-36 was symptomless and 

suggest that the endophyte strengthened the growth promotion in common bean plants, especially in the 

root length and number of leaves when compared to control plants and other treatments. Despite many 

fungi of Colletotrichum genus being described as causative agents of anthracnose, in this study, the plant 

sampled was colonized predominantly by Colletotrichum endophytes living in asymptomatic relationship. 

By the way, we come across a Colletotrichum sp. endophyte able to antagonize a Colletotrichum sp. 

pathogen. 
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Introduction 

Endophytic microorganisms constitute a polyphyletic group of microorganisms that inhabit the interior 

of healthy plants and do not cause damages to their hosts (Azevedo & Araújo, 2007; Kusari, Hertweck, & 

Spiteller, 2012; Kusari, Singh, & Jayabaskaran, 2014). The endophytic communities can be employee in 

different areas (Toghueo, Zabalgogeazcoa, Aldana, & Boyom, 2017; Kyekyeku et al., 2017; López-Gonzáles 

et al., 2017; Khan et al., 2017; Pascale et al., 2017; Ribeiro et al., 2018; Sharma, Tiwari, & Jadhav, 2018). In 

the agricultural field, endophytes might be a strategy of biological control for phytopathogens (Rondot & 

Reineke, 2016). Many studies have ready been conducted with endophytic fungi to demonstrate its ability as 

a biocontrol (Romeralo, Santamaría, Pando, & Diez, 2015; Martínez-Álvarez, Fernández-González, Sanz-

Ros, Pando, & Diez, 2016; Larran, Simón, Moreno, Siurana, & Perolló, 2016; Preto, Martins, Pereira, & 

Baptista, 2017). 

Passiflora genus (Passifloraceae) has approximately 500 species. Its potential for the identification and 

application of bioactive pharmaceutical-interest molecules has been exploited extensively in the last 

decades (Figueira, Freitas, Cruz, Figueira, & Câmara, 2015; Corrêa et al., 2016). Studies with endophytic 

microbiota of this genus of plant have also been reported successfully (Seetharaman et al., 2017; 

Rathnayake, Kumar, Jayasinghe, Araya, & Fujimoto, 2017). 

Colletotrichum phytopathogens genus affects practically all crops grown worldwide, which are likely to be 

affected by one or more species of the genus (Dean et al., 2012). The common bean is one of the greatest 

crops in the world and is a food legume for human consumption (Talaat, 2019). Several classes of pesticides 

have been used annually to maintain high agricultural production. Nevertheless, the high use of these 
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agrochemicals causes serious environmental damage (Ying, 2018), making it necessary to develop strategies 

that prioritize sustainable agriculture to mitigate the adverse effects of these xenobiotic chemical defenses. 

The formulation and sale of these agrochemicals have had a significant increase per year (Carvalho, 2017). 

As an alternative control, we can mention the use of microorganisms capable of producing antifungal 

substances or antagonizing phytopathogens (Talaat, 2019). 

In this context, the current study aimed to isolate endophytic fungi from yellow passion fruit (Passiflora 

edulis) and to select strains with biological control potential, capable of antagonizing the phytopathogen 

Colletotrichum sp. CNPUV378 in in vitro conditions. We also carried out greenhouse experiments with the 

best endophyte in bean seedlings. 

Material and methods 

Isolation of foliar endophytic fungi 

Healthy leaves of P. edulis were randomly collected in the municipality of Planaltina do Paraná, Paraná 

State, southern Brazil (latitude: 23º00’24’’S, longitude: 52º54’50’’W) and transferred to hermetic sealing 

plastic bags and stored at 4ºC for 24 hours. The endophytic fungi isolation was performed as previously 

described by Bongiorno et al. (2016), with slight modifications. Briefly, leaves were rinsed with 70% ethanol 

for 1 min., surface-disinfected with sodium hypochlorite solution (1% available Cl-) for 2 min., and rinsed 

once in 70% ethanol (for 30 s) and twice in sterile distilled water. In a laminar airflow chamber, leaves were 

aseptically cut into 500 fragments (5-mm2 area). There were five foliar fragments placed on each PDA dish 

(Potato Dextrose Agar, pH 6.6) (Himedia, Mumbai, India) supplemented with 50 µg.mL-1 tetracycline 

(Sigma, St. Louis, MO) and they remained incubated at 28ºC for 7 days. The determination of colonization 

frequency (%) and fungal purification followed the protocols described by Ribeiro et al. (2018). 

For the molecular identification, genomic DNA was extracted as described by Pamphile and Azevedo 

(2002) except that endophytes were previously grown for seven days in PDB dishes (Potato Dextrose Broth, 

pH 6.8) (Himedia, Mumbai, India). Amplification of the ITS1-5.8S-ITS2 (V9G 5’-

TTACGTCCCTGCCCTTTGTA-3’ and ITS4 5’-TCCGTAGGTGAACCTGCGG-3’) (Invitrogen, Carlsbad, CA, 

USA) was carried out as described by White, Marrow, and Jones (1990) and Van Den Ende and De Hoog 

(1999), with initial denaturation at 94ºC for 5 min.; followed by 35 cycles of denaturation at 94ºC for 30 s, 

annealing at 48ºC for 50 s, and extension at 72ºC for 2 min.; followed by a final extension at 72ºC for 5 min. 

To amplify the partial gene of β-tubulin (T1 5’-AACATGCGTGAGATTGTAAGT-3’ and Bt-2b 5’-

ACCTCAGTGTAGTGACCCTTGGC-3’) (Invitrogen, Carlsbad, CA, USA) were used the protocol described by 

Glass and Donaldson (1995) and O’ Donnell and Cigelnik (1997) with initial denaturation at 94ºC for 4 min.; 

followed by 40 cycles of denaturation at 94ºC for 30 s, annealing at 55ºC for 1 min., and extension at 72ºC 

for 1 min.; followed by a final extension at 72ºC for 3 min. Amplification of the glyceraldehyde-3-phosphate 

dehydrogenase (GPD1F 5’-CAACGGCTTCGGTCGCATTG-3’ and GPD2R 5’-GCCAAGCAGTTGGTTGTGC-3’) 

(Invitrogen, Carlsbad, CA, USA) was amplified according to Berbee, Pirseyedi, & Hubbard (1997) with initial 

denaturation at 96ºC for 2 min.; followed by 25 cycles of denaturation at 96ºC for 1 min., annealing at 52ºC 

for 45 s, and extension at 72ºC for 45 s; followed by a final extension at 72ºC for 10 min. 

PCR products were sequenced by ACTGene Análises Moleculares Ltd. (Ludwigbiotec). Sequences were 

compared to those deposited in the GenBank (Altschul, Gish, Miller, Myers, & Lipman, 1990; 

http://www.ncbi.nlm.nih.gov/genbank) using the BLASTn tool with a restricted search to type strains. Based 

on data available in the TreeBase database (Piel et al., 2009; http://www.treebase.org), closely related 

species were also selected (Studies S17061 and S14881). Sequence alignment and phylogenetic analysis were 

performed according to Polonio et al. (2016). The sequences obtained were deposited in GenBank 

corresponding to the ITS1-5.8S-ITS2 (accession numbers: MK804479 to MK804492), β-tubulin (MK848597 

to MK848609) and GPDH (MK861119). 

In vitro antagonism and competitive interactions between endophytes and Colletotrichum sp. 

CNPUV378 

There were 43 endophytic isolates randomly selected and tested for their biocontrol capacity against the 

pathogen Colletotrichum sp. CNPUV378 (provided by EMBRAPA Grape and Wine, Bento Gonçalves, RS, 

Brazil). For this, the dual culture method of Campanile, Ruscelli, and Luisi (2007) modified by Polonio et al. 

(2015) was used. All assay was performed in triplicate. 
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The percentage inhibition rate of mycelial growth (IP%) was calculated following Polonio et al. (2015): 

IP% = (1 - MT MC-1) x 100, where IP% = inhibition index percentage of mycelial growth, MT = mean of 

triplicate area measured for treatment in cm2 , and MC = average of triplicate control area in cm2. 

Competitive interactions (CI) between endophytes and phytopathogens were determined according to 

the rating scale proposed by Innocenti, Garibyan, and Badalyan (2002) and slightly modified by Ribeiro et al. 

(2018), which considers four main types of interactions (A, B, C and D) and their subtypes. The types are: 

A = inhibition of mycelial growth with contact; B = inhibition from a distance; C = endophytic growth on the 

pathogen without initial inhibition; and C= partial (CA1) and complete (CA2) endophytic growth on the 

pathogen after initial inhibition with mycelial contact; C = partial (CB1) and complete (CB2) endophytic 

growth on the pathogen after initial inhibition from a distance; D = partial (DA1) and complete (DA2) 

pathogen growth on the endophyte after initial inhibition with mycelial contact. 

Screening of antifungal activity of metabolic extracts 

Ten top endophytes (named by codes PE-08, PE-14, PE-17, PE-22, PE-27, PE-34, PE-36, PE-39, PE-

40 and PE-41) ranked in the dual culture experiment were randomly selected for the obtainment of 

crude ethyl acetate extracts containing secondary metabolites (CEAEs). There were 3 mycelia plugs (6-

mm diameter) of seven-day-old cultures of each endophyte inoculated into 500-mL Erlenmeyer flasks 

containing 250 mL of PDB (Potato Dextrose Broth; pH 6.8) (Himedia, Mumbai, India) and incubated at 

28ºC for 21 days under stationary condition. The metabolic extraction from the fermented culture 

broth, by using ethyl acetate P.A (Synth, Diadema, SP, Brazil) as solvent, followed the protocol 

described by Polonio et al. (2015).  

To evaluate the bioactivity of CEAEs against Colletotrichum sp. CNPUV378, triplicates of PDA dishes 

received 5 mm autoclaved filter paper plugs inoculated with 10 μL of CEAEs (10 mg.mL-1 in methanol) in an 

opposite position of phytopathogen plugs and remained incubated at 28 ºC for 7 days. For controls, the 

paper plugs received (instead of CEAEs) the fungicide Benlate® (30 mg.mL-1) (C1) or methanol P.A (Synth, 

Diadema, SP, Brazil) (C2); C3 consisted of a phytopathogen plug inoculated in only one point of the PDA 

dishes. The percentage inhibition rate of mycelial growth (IP%) was calculated according to Polonio et al. 

(2015). 

Greenhouse assay with Colletotrichum sp. endophyte and Colletotrichum sp. pathogen 

For the preparation of fungal inoculum, 6 mm diameter plugs of endophyte PE-36 and pathogen were 

macerated into microtubes containing 1.5 mL of autoclaved distilled water and then vortexed until 

completely homogenized. P. vulgaris seeds were treated by immersion in 70% ethanol for 1 min., surface-

disinfected with sodium hypochlorite solution (2.5% available Cl-) for 3 min. and 70% ethanol for 30 s, and 

finally rinsed three times in sterile distilled water. To evaluate the efficiency of surface-disinfection, 

aliquots (100 μL) of water from the last rinsing was spread on Petri dishes containing PDA and TSA 

(Tryptone Soy Agar, pH 7.3) (Himedia, Mumbai, India). Then, seeds were transferred to dishes containing 

cotton soaked with 20 mL of water (both of them were previously autoclaved) and incubated at 28ºC without 

photoperiod for 3 days. On the 3rd day, germinated seeds were transferred to 250 mL polypropylene 

containers with a mixture of Mecplant® substrate + vermiculite (3:1 v v-1) and soil (1:1 v v-1). The soil was 

collected at Universidade Estadual de Maringá (23º24’12.18” S and 51º56’30.54” W), autoclaved at 121ºC for 

120 min. 

There was one germinated seed placed in each container (with prepared soil and previously moistened 

with water) at approximately 3 cm depth, with the radicle facing down. The treatments were: control with 

water (C), plants only inoculated with the endophyte (T1), plants only inoculated with the phytopathogen 

(T2) and plants simultaneously inoculated with the endophyte + pathogen (T3). A total of 800 μL of each 

fungal suspension was used with 10 plants for each treatment (one plant per container). The presence or 

absence of symptoms and measurement of the biometric parameters (height, number of leaves, and root 

length) was performed 25 days after inoculations. 

Statistical analysis 

Data from the in vitro antagonism and antifungal activity the IP% values were analyzed using analysis of 

variance and the means were compared by the Scott-Knott test (p < 0.05 was taken to indicate a statistically 
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significant difference) using the statistical program SISVAR 5.6 (Ferreira, 2011). To greenhouse experiment, 

the means of biometric parameters were compared by the Tukey’s test also taking p < 0.005 to indicate a 

statistical significant difference (Ferreira, 2011). 

Results and discussion 

Isolation and molecular identification of endophytic fungi 

From the 500 leaf fragments sampled from P. edulis, we obtained a colonization frequency of 89%. 

The efficiency of the surface-disinfection process was attested by the absence of microbial growth in 

the control dishes. In order to isolate strains from the endophytic community, the surface disinfection 

of host plant material is necessary to ensure the elimination of epiphytes. In agreement with this 

current study, sodium hypochlorite and alcohol solutions have been employed in endophytic isolation 

protocols (Rani, Sharma, Chaturvedi, & Yadav, 2017; Salazar-Cerezo, Martinez-Montienel, Cruz-Lopez, 

& Martinez-Contreras, 2018; Lateef et al., 2019). For a look into the properties of endophytic 

microorganisms, the fragmentation of plant material represents a successful methodology that 

demonstrates satisfactory results for isolating the endophytic community, as already reported for 

different host plants (Wang et al., 2015). 

The results of the BLASTn analysis are shown in Table 1. Phylogenetic analysis confirmed the 

molecular identification of endophytes PE-08, PE-14, PE-22, PE-27, PE-34, PE-36, PE-40, and PE-41 at 

the genus level as Colletotrichum sp. The taxonomy of PE-10, PE-17, PE-19, PE-26, and PE-38 was 

confirmed at the species level as Colletotrichum brevisporum [ITS BLASTn 98%; β-tubulin BLASTn 100%; 

100% Bayesian probability (BP)], while PE-39 was confirmed as Curvularia senegalensis (ITS BLASTn 

97%; 100% PB) (Figure 1).  

Table 1. Endophytic fungi isolated from passion fruit and sequences with the greatest identity when aligned to the GenBank database 

(NCBI). 

Endophyte Gene Fungus with highest similarity GenBank code Identity 

 

PE-08 

ITS Colletotrichum gloeosporioides AJ301979.1 96% 

TUB Colletotrichum cliviae KJ955361.1 100% 

 

PE-10 

ITS Colletotrichum gloeosporioides MF076617.1 98% 

TUB Colletotrichum brevisporum MF033887.1 99% 

 

PE-14 

ITS Colletotrichum gloeosporioides AJ301979.1 99% 

TUB Colletotrichum cliviae KJ955361.1 99% 

 

PE-17 

ITS Colletotrichum gloeosporioides MF076617.1 98% 

TUB Colletotrichum brevisporum MF033887.1 99% 

 

PE-19 

ITS Colletotrichum gloeosporioides MF076617.1 98% 

TUB Colletotrichum brevisporum MF033887.1 99% 

 

PE-22 

ITS Colletotrichum gloeosporioides AJ301979.1 98% 

TUB Colletotrichum cliviae KU743289.1 99% 

 

PE-26 

ITS Colletotrichum gloeosporioides MF076617.1 98% 

TUB Colletotrichum brevisporum MF033887.1 99% 

 

PE-27 

ITS Colletotrichum gloeosporioides AJ301979.1 99% 

TUB Colletotrichum cliviae KJ955361.1 100% 

 

PE-34 

ITS Colletotrichum gloeosporioides AJ301979.1 99% 

TUB Colletotrichum cliviae KJ955361.1 100% 

 

PE-36 

ITS Colletotrichum gloeosporioides AJ301979.1 99% 

TUB Colletotrichum cliviae HM585423.1 99% 

 

PE-38 

ITS Colletotrichum gloeosporioides MF076617.1 98% 

TUB Colletotrichum brevisporum MF033887.1 99% 

 

PE-39 

ITS Curvularia senegalensis HG779001.1 97% 

GPDH Curvularia affinis LT715785.1 98% 

 

PE-40 

ITS Colletotrichum gloeosporioides AJ301979.1 99% 

TUB Colletotrichum cliviae KJ955361.1 100% 

 

PE-41 

ITS Colletotrichum brevisporum 9KU498265.1 98% 

TUB Colletotrichum sp. GU994315.1 91% 



Endophytes isolated from Passiflora edulis  Page 5 of 11 

Acta Scientiarum. Biological Sciences, v. 42, e48321, 2020 

 

Figure 1. Cladogram results of the Bayesian analysis of endophytic fungi from Passiflora edulis with the alignment of three genes 

combined (ITS, β-Tubulin and GPDH*). The Bayesian probability was demonstrated on the nodes between each individual. *Only for 

PE-39. 

Literature data had already reported the abundant occurrence of Colletotrichum in the endophytic 

community (Vieira, Michereff, Morais Jr, Hyde, & Câmara, 2014; Nascimento et al., 2015; Gonzaga, Costa, 

Santos, Araújo, & Queiroz, 2015; Correia, Lira, Assis, & Rodrigues, 2018) Herein, Curvularia endophytes 

were less frequent in the P. edulis community; this genus was also isolated as an endophytes from other 

vegetal species (Bezerra et al., 2013; Nascimento et al., 2015; Correia et al., 2018). 

In vitro antagonistic and antifungal activity of endophytes against Colletotrichum sp. CNPU378 

Dual culture results showed differences among the antagonistic actions, ranging from 28.8% to 48.8% of 

IP% against Colletotrichum sp. CNPU378. Based on the rating scale proposed by Innocenti et al. (2002) and 

modified by Ribeiro et al. (2018), the types of CI observed were: A = deadlock (inhibition of phytopathogen) 

with mycelial contact (77.2%); DA1 = partial pathogen growth on the endophyte after initial inhibition with 

mycelial contact (13.6%); CA1 = partial endophyte growth on the pathogen after initial deadlock with 

mycelial contact (4.5%), and DB1 = partial pathogen growth on the endophyte after initial deadlock at a 

distance (4.5%). The Scott-Knott test highlighted 15 endophytic strains as promising antagonists in 

comparison with the control 2 (phytopathogen plug inoculated in only one point of Petri dish). More details 

regarding the antagonism index and competitive interaction are shown in Table 2 and Figure 2. 

Table 2. Inhibition index of pathogen mycelial growth and competitive interaction between Passiflora edulis endophytes and 

Colletotrichum sp. CNPU378 in dual culture assay. 

Endophytes code Antagonism index (%)* Competitive interaction ** 

PE-39 48.4ª DA1 

PE-34 48.0a A 

PE-40 47.7ª A 

PE-17 47.5ª A 

PE-36 47.1ª A 

PE-27 46.5ª CA1 

PE-22 45.8ª A 

PE-08  45.1ª DB1 

PE-14 44.8ª DA1 

PE-41 44.5ª A 

Curvularia akaii CBS 127728 
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Endophytes code Antagonism index (%)* Competitive interaction ** 

PE-26 44.3ª A 

PE-38 44.1ª A 

PE-10 43.3ª DA1 

PE-19 43.2ª DA1 

PE-21 40.6b A 

PE-12 39.9b A 

PE-24 39.6b A 

PE-13 39.5b A 

PE-06 39.4b A 

PE-18 38.9b A 

PE-30 38.3b A 

PE-11 38.1b A 

PE-44 37.9b A 

PE-04 37.8b CA1 

PE-01 37.5b DA1 

PE-31 37.5b A 

PE-37 37.5b A 

PE-43 37.3b A 

PE-33 35.9b A 

PE-25 35.8b A 

PE-29 35.1c A 

PE-16 35.0c A 

PE-15 34.3c A 

PE-05 34.1c A 

PE-09 33.7c A 

PE-42 33.6c A 

PE-07 33.2c A 

PE-28 32.7c A 

PE-02 32.4c DB1 

PE-23 31.3c A 

PE-32 31.2c A 

PE-35 30.8c A 

PE-03 28.8c DA1 

Control 1 45.5ª --- 

Control 2 0.0d --- 

*Means of triplicates. Means followed by the same letter in column do not differ by the Scott-Knott test (p < 0.05). **Rating scale based on Innocenti et al. 

(2002) and Ribeiro et al. (2018). The absence of competitive interaction was indicated by (---).  

 

Figure 2. In vitro antagonism of endophytic fungi associated with Passiflora edulis against pathogen Colletotrichum sp. CNPUV38. A. 

Negative control with pathogen; B. Positive control with commercial fungicide; C. PE-17 (right) against pathogen (left); D. PE-34 

(right) against pathogen (left); E. PE-36 (right) against pathogen (left); F. PE-39 (right) against pathogen (left); G. PE-40 (right) against 

pathogen (left); H. PE-08 (right) against pathogen (left); I. PE-14 (right) against pathogen (left); J. PE-22 (right) against pathogen 

(left); K. PE-27 (right) against pathogen (left); L. PE-41 (right) against pathogen (left). 
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Many studies have investigated the in vitro activity of endophytes against Colletotrichum pathogens. 

Rabha, Naglot, Sharma, Gogoi, and Veer (2014) showed that the indexes of antagonistic activity of fungal 

endophytes against Colletotrichum camelliae ranged from 18.33 to 36.73. The inhibition indexes (17.52 to 

49.71%) obtained by Bongiorno et al. (2016.) were similar to those obtained in this study (28.8 to 48.8%). 

Supporting our results, literature data has already been reported on the deadlock (mutual inhibition) at 

mycelial contact (type A) as the most frequent in the pathogen-endophytes competitive interaction 

(Campanile et al., 2007; Polonio et al., 2015; Wang et al., 2015; Bongiorno et al., 2016), in which mutual 

fungal inhibition occurs and neither microorganism is able to overgrow the other (Innocenti et al., 2002; 

Oliveira et al., 2019). 

Table 3 describes the results obtained for the in vitro antifungal activity of CEAEs of secondary 

metabolites. The higher IP% (=20.8%) against the Colletotrichum sp. CNPU378 was reported for the extract 

(named as code CEAEPE-36) obtained from the endophyte PE-36. 

Table 3. In vitro antifungal activity of crude ethyl acetate extracts (CEAEs) from Passiflora edulis endophytes, based on the inhibition 

index of mycelial growth (%) of Colletotrichum sp. CNPU378. 

CEAEs(fungal code)/ controls Inhibition index % Mycelial growth of phytopathogen (cm2) 

CEAEPE-36 20.8b 38.76 

CEAEPE-39 14.5c 41.88 

CEAEPE-08 13.6c 42.30 

CEAEPE-17 13.1c 42.53 

CEAEPE-14 12.0c 43.08 

CEAEPE-41 10.9d 43.60 

CEAEPE-22 6.8d 45.60 

CEAEPE-27 9.1d 44.48 

CEAEPE-34 8.5d 44.78 

CEAEPE-40 6.7d 45.67 

Control 1 45.8ª 26.54 

Control 2 12.5c 42.82 

Control 3 0.0e 48.94 

* Means of triplicates. Means followed by the same letter in column do not differ by the Scott-Knott test (p < 0.05). Control 1 = paper plug with 10 µL of 

fungicide Benlate® (30 mg.mL-1); Control 2 = paper plug with 10 µL of methanol; C3 = phytopathogen plug inoculated in only one point of Petri dish. 

Concentration of CEAEs = 10 µL of 10 mg.mL-1 solution of crude extracts. 

Landum et al. (2016) reported that extracts with non-volatile compounds, produced by endophytes from 

olive plants, reached up to 26.8% of inhibition rates in dual culture tests against C. acutatum, similar to rates 

found in this study (up to 20.8% of mycelial inhibition). 

Greenhouse assay 

Table 4 details the biometric parameters related to the vegetative growth of bean plants. Plants 

inoculated only with the endophyte Colletotrichum sp. PE-36 (T1) was symptomless and showed the 

difference for number of leaves and root length when compared to control plants (C) and other treatments 

(T2 and T3). Our findings suggest that the endophyte strengthened the growth promotion of the treated 

plants (T1). The T2 treatment presented inferior results in all biometric parameters analyzed. In addition, 

the T2 treatment presented whitish lesions in the root system apparently caused by the mycelial growth of 

Colletotrichum sp. CNPUV378, which were not found in the other treatments, suggesting that plants 

inoculated with endophyte + pathogen (T3), the endophyte was able to soften the propagules of the 

pathogen Figure 3. 

Table 4. Biometric parameters related to the vegetative growth of bean plants with and without inoculation of the endophyte 

Colletotrichum sp. (PE-36) and phytopathogen Colletotrichum sp. CNPU378. 

Treataments 
Height  

(cm) 

Root length  

(cm) 
Leaves number 

Control (C) 34.9ª 20.2ab 9.1ab 

Endophyte Colletotrichum sp. PE-36 (T1) 33.0ab 21.5ª 11a 

Pathogen Colletotrichum sp. CNPU378 (T2) 19.2c 17.1b 8.2b 

Pathogen x Endophyte PE-36 (T3) 23.50bc 19.4ab 10ab 

Means of triplicates followed by lower-case letters indicate that values are not significantly different according to the Tukey test (p < 0.05). 
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Figure 3. Evaluation of the endophytic strain PE-36 against the pathogen Colletotrichum sp. CNPUV38 under greenhouse conditions. A. 

Control plant (C); B. plant inoculated with pathogen Colletotrichum sp. CNPUV38 and endophyte Colletotrichum sp. PE-36 (T3); C. Plant 

only with the pathogen Colletotrichum sp. CNPUV38 (T2). 

Different mechanisms of in vivo biocontrol can be employed alone or together with other strategies to 

trigger direct or indirect responses to overcome the pathogenicity of the causal agent (Ghorbanpour, 

Omidvari, Dahaji, Omidavar, & Kariman, 2018). Consistent with our in vivo assay, Rodríguez et al. (2016) 

reporting that the application of a suspension of an endophytic fungus on necrotic leaves reduced the spore 

production of the pathogen after 21 days. In addition, the authors evaluated the endophytic colonization 

through plant height, root length, biomass, and the number of leaves. Li, Hwang, Huang and Huang (2018) 

described an endophyte able to carry out the suppression of Fusarium wilt of tomato plants and beefing up 

their growth, mainly through the absorption of nutrients. 

Conclusion 

Despite many fungi of the genus Colletotrichum being described as causative agents of anthracnose, in 

this study, the plant sampled was 89% colonized predominantly by Colletotrichum endophytes living in 

asymptomatic relationship with the host Passiflora edulis, especially the isolate Colletotrichum sp. PE-36 

with a highlight in in vitro and in vivo experiments.  

In this work, a Colletotrichum endophytic fungus highlighted in antagonistic activity against a pathogen 

in the agricultural system, reinforcing the idea that endophytic microorganisms are a possible tool for the 

development of more sustainable, eco-friendly and easy field application as an inoculant. agricultural. 
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