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ABSTRACT. This study evaluated the biomass distribution of microcrustaceans in three 
subtropical reservoirs in Brazil and the relationship among these distributions and some 
limnological variables in the reservoirs. The hypothesis was that the microcrustacean 
biomass is distributed according to Marzolf´s third model, proposed in 1990 for 
zooplankton density in tropical reservoirs. The planktonic microcrustacean biomass ranged 
from 261.5 mg DW m-3 (Iraí reservoir, transition zone, dry season) to 0.03 mg DW m-3 
(Segredo reservoir, fluvial zone, wet season). The highest biomass values were registered in 
the transition zone, but this longitudinal variation was not significant. The total biomass 
was related to the trophic state of each reservoir, and a higher difference was observed 
among the reservoirs than within them. The longitudinal biomass distribution was also 
related with the longitudinal distribution of chlorophyll-a and showed the same pattern 
described in Marzolf´s third model. In this way, the results suggested that this model 
developed for density zooplankton could be employed for the longitudinal distribution of 
zooplankton biomass in the studied reservoirs.  
Key words: zooplankton, biomass, longitudinal distribution, tropical reservoirs. 

RESUMO. Distribuição longitudinal da biomassa de microcrustáceos em três 

reservatórios tropicais (Estado do Paraná, Brasil). Este estudo avaliou a distribuição 
longitudinal da biomassa de microcrustáceos planctônicos, em três reservatórios 
subtropicais, no Brasil, e a relação dessa distribuição com algumas variáveis limnológicas em 
reservatórios. A hipótese foi que a biomassa de microcrustáceos se distribui similarmente 
como proposto no terceiro modelo de Marzolf (1990) para densidade zooplanctônica em 
reservatórios tropicais. A biomassa dos microcrustáceos variou de 261,5 mg DW m-3 
(Reservatório de Iraí, zona de transição, estação seca) a 0,03 mg DW m-3 (Reservatório de 
Segredo, zona fluvial, estação chuvosa). Os valores mais elevados de biomassa foram 
registrados na zona de transição, embora esta variação não tenha sido significativa. A 
biomassa total esteve relacionada com o estado trófico de cada reservatório, sendo, ainda 
constatado uma maior diferença de biomassa entre os ambientes do que entre cada zona dos 
reservatórios. A distribuição longitudinal da biomassa foi relacionada também com a 
distribuição longitudinal de clorofila-a e apresentou padrão conforme o terceiro modelo 
proposto por Marzolf. Este fato sugere que esse modelo poderia ser usado para descrever a 
distribuição longitudinal da biomassa nos reservatórios estudados.  
Palavras-chave: zooplâncton, biomassa, distribuição longitudinal, reservatório. 

IIIIntroductionntroductionntroductionntroduction    

Cladocerans and copepods are important groups of 
reservoir zooplankton, usually representing a major 
part of the zooplankton community biomass (De 
Manuel and Jaume, 1994; Rocha et al., 1995; 
Ghadouani et al., 1998). These microcrustaceans 
participate actively in the energy flow and nutrient 
cycling of aquatic systems since they are characterized 
as efficient filter feeders and predators on bacteria and 
phytoplankton, and also due to their importance as a 
food resource for other invertebrates and fishes.  

Reservoirs show typically both abiotic and biotic 
gradients upstream towards the dam, especially on 
account of the progressive settlement of particles 
and materials transported in the inflowing river 
water. This process often results in the 
establishment of a longitudinal zonation (Thornton 
et al., 1981; Thornton, 1990) in tropical reservoirs, 
with three distinct regions: fluvial zone, transition 
zone and lacustrine zone. Based on this longitudinal 
gradient, Marzolf (1990) proposed three gradient 
models to describe the distribution of zooplankton 
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populations in reservoirs. The third model 
considered resource inputs to the reservoir and 
water flow regime, and described maximum 
zooplankton density in the transition zone with 
lower densities close to the dam and at the upstream 
end of the reservoir. This pattern was also observed 
by Takahashi et al. (2005) for richness and 
abundance of planktonic cladocerans in a tropical 
reservoir in Brazil and by Velho et al. (2005) for 
zooplankton abundance in two subtropical 
reservoirs in Brazil. 

In this study, we explored the biomass 
distribution of microcrustaceans in three subtropical 
reservoirs in Brazil, the principal limnological 
 

variables that should be related to biomass. We 
hypothesized that the microcrustacean biomass 
should be longitudinally distributed similarly to 
Marzolf’s third model in those subtropical 
reservoirs. 

MMMMateriateriateriaterial and methodsal and methodsal and methodsal and methods    

Three reservoirs were selected for this study 
(Segredo, Mourão and Iraí Reservoirs), which are 
located in different watersheds in Paraná State 
(Southern Brazil) and also differ in nutrient 
concentrations, depth, uses, area and age (Figure 1 
and Table 1). 

 
Figure 1. Paraná state map and the location of the three reservoirs studied in March and November 2002. 
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Table 1. Reservoirs limnological features, area, age, coordinates, watershed and main use. 

Reservoir Segredo Mourão Iraí 
Coordinates 25047’46”S; 52008’07”W 24006’25”S; 52019’45”W 25025’24”S; 49006’46”W 
Watershed Iguaçu River Ivaí River Iguaçu River 
Uses Electric power generation Water supply and electric power generation Water supply 
Area (km2) 80.4 11.2 14.4 
Age (year) 12 5 40 
Mean depth (m) Fluvial region = 18.5 

Transitional region = 37.0 
Lacustrine region = 105.0 

Fluvial region = 1.5 
Transitional region = 7.5 
Lacustrine region = 8.0 

Fluvial region = 0.5 
Transitional region = 4.5 
Lacustrine region = 7.0 

 

Sampling of cladocerans and copepods was 
undertaken on the subsurface (0.5 m) in three 
pelagic sampling stations (fluvial, transition and 
lacustrine zones) of each reservoir, during the 
morning on two seasons in 2002 (wet season: 
March; dry season: September). Each sample 
consisted of 1000 L of water collected subsurface 
using a motorized pump and a 68 µm mesh 
plankton net and preserved immediately with 
buffered formalin (4%). Water temperature (oC) 
(YSI digital portable thermistor), dissolved oxygen 
concentration (mg L-1) (YSI digital portable 
oximeter), depth (m), water electrical conductivity 
(µS cm-1) (Digimed digital portable potentiometer), 
turbidity (NTU) (LaMotte portable turbidimeter) 
and total alkalinity (mEq L-1) (Carmouze, 1994) 
were measured in situ in the same depth and periods 
of the zooplankton samples. Water samples were 
taken with the same methodology for other 
laboratory analysis using a Van Dorn bottle (5 L) and 
kept frozen. In the laboratory, samples were filtered 
(Whatman GF/C membrane) to quantify the total 
suspended material (MTS), after drying at 105°C 
(Teixeira et al., 1965). The total phosphorus (µg L-1), 
total Kjeldahl nitrogen (µg L-1) (Mackereth et al., 
1978), and chlorophyll-a concentrations (µg L-1) 
were also determined (Golterman et al., 1978).  

Quantity of suspended inorganic material 
(calculated from suspended material concentration) 
was used as an indirect indicator of current flow in the 
reservoir. The highest suspended inorganic material 
concentration values could suggest a high current flow 
and the lowest concentration values could suggest a 
low current flow. This last variable and the 
chlorophyll-a concentration, as an indirect indicator of 
food concentration, were considered the principal 
variables to determine the longitudinal zooplankton 
distribution, according to Marzolf´s model (1990). 
The correlations among microcrustacean biomass and 
chlorophyll-a, and suspended inorganic material were 
estimated. 

Microcrustacean density was estimated by 
counting at least 150 individuals in a Sedgwick-

Rafter chamber in three subsamples (2.0 mL) taken 
with a Hensen-Stempell pipette under a microscope 
(Bottrell et al., 1976). Samples with reduced number 
of individuals were counted per whole sample. Final 
density was expressed as individuals per cubic meter. 
Microcrustacean biomass estimation (mg DW m-3) 
was based on total dry weight of the individuals 
(Duncan, 1975) in the three subsequent quantitative 
subsamples. Samples with reduced numbers of 
individuals were weighted in total. The individuals 
were dried at 60°C for 24 hours (Edmondson and 
Winberg, 1971; McCauley, 1984; Geller and Müller, 
1985). The dry weight was estimated using a Sartory 
microanalytical scale (0.1 µg precision).  

To evaluate if the means of zooplankton biomass 
were significantly among the regions along the 
reservoirs’ longitudinal axis (fluvial, transition and 
lacustrine zones), we used Analysis of Variance 
(one-way ANOVA) (Sokal and Rohlf, 1991) for the 
independent factors (zones). Normality and 
homocedasticity assumptions were tested a posteriori. 
In order to identify the principal variables that 
characterized the reservoirs, we performed a 
Principal Components Analysis (PCA). The first 
two axis of this ordination analysis represent the 
highest explanations of their variability (Jackson, 
1993). To normalize the data, log transformation, 
log10 (x + 1), a prior to analysis, was applied. The 
probability level considered as significant in 
correlation analysis was p < 0.05. All statistical 
analyses were undertaken using Statistica version 5.0 
(Statsoft, 1996). 

RRRResultsesultsesultsesults    

The planktonic microcrustacean biomass ranged 
from 261.5 mg DW m-3 (Iraí reservoir, transition 
zone, dry season) to 0.03 mg DW m-3 (Segredo 
reservoir, fluvial zone, wet season). Iraí reservoir 
presented the higher mean biomass value (101.5 mg 
DW m-3) and Mourão and Segredo reservoirs 
presented lower ones (6.8 mg DW m-3 and 7.3 mg 
DW m-3, respectively) (Table 2). 
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Table 2. Values of biotic and limnological variables registered in each sampling station. B: microcrustacean biomass (mg DW m-3); D: 
microcrustacean density (ind m-3); MD: maximum depth (m); K: water conductivity (µS cm-1); TR: turbidity (NTU); DO: dissolved 
oxygen (mg L-1); WT: water temperature (oC); AL: alkalinity (mEq L-1); CL: chlorophyll-a concentration (µ L-1); SIM: suspended 
inorganic material (µ L-1); TN: total nitrogen (µ L-1); TP: total phosphorus (µ L-1) (Pagioro et al., 2005); F: fluvial zone; T: transition zone; 
L: lacustrine zone.  

Variables  B D MD K TR DO WT AL CL SIM TN TP 
Reservoir Zone Wet season 
Segredo F 0.03 107 19.00 43.10 1.89 3.23 23.60 255.70 0.14 7.60 587.94 11.76 
 T 4.90 130 35.00 41.30 1.75 4.48 23.90 256.80 0.96 5.30 532.84 10.73 
 L 1.17 347 100.00 38.40 0.78 7.59 24.80 244.90 4.37 0.85 442.63 10.58 
Mourão F 4.40 571 2.50 28.50 6.20 7.57 22.60 217.80 0.15 1.86 208.90 8.52 
 T 9.18 287 9.00 24.40 1.85 7.66 26.70 184.20 2.73 0.11 140.86 9.70 
 L 0.28 30 10.00 24.70 1.32 7.32 26.40 182.50 2.28 0.10 175.99 10.14 
Irai F 16.99 7964 0.50 54.20 2.40 6.90 25.20 322.90 8.19 1.80 480.56 31.53 
 T 50.51 20416 4.00 47.20 4.78 8.92 25.40 307.50 22.75 0.15 797.34 36.98 
 L 7.14 30397 7.50 48.60 5.28 9.10 26.00 465.40 35.49 0.15 789.18 39.20 
  Dry season 
Segredo F 3.02 3766 18.00 56.10 1.04 7.09 16.40 277.60 0.91 4.50 759.81 16.51 
 T 20.26 8330 39.00 56.00 2.65 7.22 17.00 270.60 2.18 4.88 833.88 18.01 
 L 11.66 3729 110.00 45.40 0.60 8.05 18.10 262.30 2.05 6.40 712.17 10.95 
Mourão F 1.10 441 0.50 26.60 15.79 8.08 16.70 216.20 0.55 3.00 267.58 16.21 
 T 18.14 24824 6.00 25.70 13.91 7.61 22.10 202.50 1.37 2.35 184.10 16.21 
 L 10.59 2129 6.00 23.20 2.72 7.66 20.70 168.90 3.96 0.98 167.16 13.35 
Irai F 104.50 6655 0.50 56.80 4.10 9.21 13.50 354.60 2.18 1.18 600.06 42.65 
 T 261.52 200155 5.00 46.60 6.62 9.48 17.30 275.00 32.76 0.56 657.46 39.20 
 L 168.66 303287 6.50 45.10 5.24 7.62 16.70 281.20 23.44 0.85 431.54 48.51 

 
The first two axis of the PCA together explained 

73% (PCA1 = 43%, PCA2 = 30%) of the 
limnological variation (Table 3).  

Table 3. PCA results from correlations of limnological variables 
for the first two principal axis. 

Variables Axis 1 Axis 2 
Depth (m) 0.162359 0.844884 
Conductivity (µS cm-1) -0.900169 0.389091 
Turbidity (NTU) -0.113845 -0.853649 
Dissolved oxygen (mg L-1) -0.299967 -0.580709 
Water temperature (0C) 0.483167 0.219156 
Alkalinity (mEq L-1) -0.910134 0.119941 
Total nitrogen (µ L-1) -0.855452 0.456587 
Total phosphorus (µ L-1) -0.838337 -0.400266 
% explanation 43 29 
 

Considering the longitudinal gradient in each 
reservoir formerly mentioned during the two 
seasons, the higher biomass values occurred in the 
transition zone; however, the biomass showed no 
significantly difference among the zones (F(2,15) = 
1.2437; p = 0.316) (Figure 2). 

The reservoirs remained separated into three 
groups, suggesting that the limnological variation 
was higher among the reservoirs than within them. 
Iraí reservoir was characterized by higher values of 
conductivity, alkalinity, total nitrogen, total 
phosphorus (axis 1), dissolved oxygen, and turbidity 
(axis 2), lower water temperature (axis 1), and depth 
values (axis 2). Mourão reservoir also showed higher 
turbidity and dissolved oxygen values and lower 
depth values (axis 2), but lower total phosphorus, 
total nitrogen, conductivity and alkalinity and higher 
water temperature values (axis 1). Finally, Segredo 

reservoir was characterized by higher total nitrogen, 
conductivity, alkalinity, water temperature and 
lower total phosphorus values (axis 1), and higher 
depth and lower dissolved oxygen and turbidity (axis 
2) (Figure 3). 
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Figure 2. Biomass of planktonic microcrustaceans registered in 
different regions (F = fluvial, T = transition and L = lacustrine) 
from each reservoir (A) and ANOVA results (B) (symbol = 
mean; vertical bar = 0.95 confidence intervals).  
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Figure 3. Scores distribution along PCA axis according to the 
limnological variables registered in the reservoirs (zone and season). 

In general, the chlorophyll-a concentration 
showed an increase of values from the fluvial to 
lacustrine zone. On the other hand, the 
suspended inorganic material showed a clear 
decreasing tendency downstream towards the dam 
(Figure 4). However, in both cases those 
diferences were not significant. 

The microcrustacean biomass was significant 
and positively correlated with the chlorophyll-a 
concentration (r = 0.64, p < 0.05), but was not 
correlated with suspended inorganic material. The 
Pearson correlation suggested that the biomass 
increased with the increase of the phytoplankton 
biomass, and was observed mainly at the Iraí 
reservoir (Figure 5).  

The higher mean microcrustacean density values 
were registered in the transition zone of Segredo and 
Mourão reservoirs, and in the lacustrine zone at Iraí 
reservoir. This variable and microcrustaceans 
biomass were significant and positively correlated 
(r = 0.85; p < 0.05) (Figure 6). 
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Figure 4. Chlorophyll-a and suspended inorganic material 
concentrations registered in different zones (F = fluvial,  
T = transition and L = lacustrine) from each reservoir (A e B) and 
ANOVA results (C e D) (SIM = suspended inorganic material) 
(symbol = mean; vertical bar = 0.95 confidence intervals).  
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Figure 5. Significant correlation between microcrustacean 
biomass and chlorophyll-a concentration (ir = Iraí reservoir, mo 
= Mourão reservoir, se = Segredo reservoir). 
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Figure 6. Microcrustacean density registered in different regions 
(F = fluvial, T = transition and L = lacustrine) from Iraí (A), 
Mourão and Segredo (B) reservoirs, and significant correlation 
between density and microcrustaceans biomass (C) (ir = Iraí 
reservoir, mo = Mourão reservoir, se = Segredo reservoir) 
(symbol = mean; vertical bar = 0.95 confidence intervals). 

DDDDiscussioniscussioniscussioniscussion    

According to the PCA results, the reservoirs 

show different limnological features. In this sense, 
Iraí reservoir has typical characteristics of a 
eutrophic environment, while Segredo reservoir is a 
mesotrophic one, and Mourão reservoir is an 
oligotrophic one. In this way, the microcrustacean 
biomass values recorded for these reservoirs (Iraí 
reservoir = 101.5 mg DW m-3, Mourão reservoir = 6.8 
mg DW m-3, Segredo reservoir = 6.8 mg DW m-3) 
were also relatively similar to values obtained by other 
authors for tropical reservoirs with similar trophic 
status (Infante, 1993; González et al., 2002; Pinto-
Coelho et al., 2005). Specifically, in Brazilian 
oligotrophic reservoirs, Melão and Rocha (2000) 
registered 0.5-63 mg DW m-3 microcrustacean 
biomass (Dourada lake), and Sendacz et al. (2006) 13 
mg DW m-3 (Ponte Nova reservoir). In a eutrophic 
reservoir, Sendacz et al. (2006) registered 381 mg 
DW m-3 microcrustaceans biomass.  

The microcrustacean biomass was influenced by 
the trophic features of the reservoir and this is 
clearly shown at the Iraí reservoir, where the higher 
biomass values were registered with the highest 
values of water conductivity, alkalinity, total 
nitrogen and total phosphorus. In this way, the 
microcrustacean biomass was related with the 
trophic state of the reservoirs and the results showed 
a higher microcrustacean biomass difference among 
the reservoirs than within them. 

According to the longitudinal axis of the 
reservoirs, the longitudinal distribution of biomass 
was positively and significantly related to the 
chlorophyll-a concentration (p < 0.05). Strong 
correlations between microcrustacean biomass and 
chlorophyll-a have been found in other lakes and 
reservoirs. The phytoplankton production was 
highest at Iraí reservoir, in concordance with Train 
et al. (2005). This correlation was also observed by 
Amarasinghe et al. (1997) in three reservoirs in Sri 
Lanka, and Hanson e Peters (1984) observed similar 
ones in two African lakes.  

However, is important to remark that the Figure 
7 shows the highest values of chlorophyll-a in the 
lacustrine zone and Figure 2 shows the highest 
values of microcrustacean biomass in the transition 
zone. This fact could be explained because the water 
flow is lowest in the lacustrine zone, and therefore 
sediment the majority of organic material into the 
flow, which is a food resource to filtered 
zooplankton, but also sediment the inorganic 
material, which hinders phytoplankton 
development. Consequently, by combination of 
these factors, the zooplankton biomass is highest in 
the transition zone. On the other hand, Kimmel  
et al. (1990) announced that a higher phytoplankton 
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biomass is frequently observed in transition regions 
of reservoirs.  

Our results are concordant with the third 
Marzolf model (1990), which shows that the 
depreciating tendency of water flow and the crescent 
tendency in food concentration downstream toward 
the dam explain the highest values of zooplankton 
density in the transition zone in tropical reservoirs. 
Hence, the longitudinal distribution of 
microcrustacean biomass, food resource and water 
flow showed the same pattern described in this 
model. In this way, the results suggested that this 
model, which was developed for zooplankton 
density, could be employed in the prediction of 
longitudinal distribution of zooplankton biomass in 
the studied reservoirs; however new studies are 
necessary to support this point. 
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