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ABSTRACT. Fish and fishing products are among the most traded food types worldwide. Thus, the use of 

economically viable and sustainable diet supplementation alternatives to ensure animal health 

improvement is increasingly requested. Furthermore, the adoption of agricultural waste is a sustainable 

activity that helps reducing environmental pollution. The aim of the present study is to assess the 

antioxidant effect of a diet based on different rice bran phytic acid (PA) concentrations, namely: 0.5, 1.0, 

1.5 and 2.0% by using oxidative stress and detoxification biomarkers in fish species Cyprinus carpio and 

Rhamdia quelen. The activity of glutathione S-transferase (GST) and hepatic catalase (CAT) in C. carpio 

decreased at 2.0% PA. Lipid peroxidation (LPO) increased in the liver at 2.0% PA and the carbonylated 

protein (CP) content decreased at all tested concentrations. The activity of GST increased in R. quelen at 

2.0% PA, whereas CAT activity decreased at 0.5 and 1.5% PA. According to the current study, phytic acid 

might bring benefits to fish at concentrations up to 1.5% PA. In addition, adding this antioxidant to the 

feeding of fish bred in ponds can even lead to more significant effects. 
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Introduction 

Fish and fishing products are among the most traded food types worldwide (Organização para a 

Cooperação e Desenvolvimento Económico/Organização das Nações Unidas para a Alimentação e a 

Agricultura [OECD/FAO], 2019) due to their high nutritional value, high protein content and essential 

micronutrients. Overall, the fishing and aquaculture sectors recorded expansion in production, trading and 

consumption in 2018, when it reached historical peaks. Estimates show that the total amount of bred fish will 

globally grow in the next years ([OECD/FAO], 2019).  

Freshwater fish farming is a well outspread activity in Brazil (Barros & Martins, 2012), since the country 

presents favorable features for fish farming such as the wide territorial extension and varied climatic diversity. 

Thus, many fish species can be exploited by this economic activity (Fracalossi et al., 2004). Common carp 

(Cyprinus carpio) is one of the oldest freshwater species used for commercial production because it easily 

adapts to different climates; therefore, it has global relevance (Kong et al., 2016; Vandeputte, 2003). Silver 

catfish (Rhamdia quelen) is a neotropical fish native to South America; it is commonly bred in fish farming 

(Brito et al., 2017) and is largely accepted by the consumer market.  

Several variables must be assessed in combination in order for fish farmers to achieve good fish yield. It is 

essential having a good nutritionally balanced diet, as well as ideal abiotic conditions, for fish breeding. The 

entry of chemical compounds from sources external to fishponds, for example, can become a stress factor for 

these confined aquatic organisms. Contamination by xenobiotics, such as pesticides and fertilizers used in 

agricultural activities, besides domestic sewage (of the most varied compositions) is among problems related 

to water resources (Pérez et al., 2018; Vieira et al., 2019; Storck et al., 2022, 2025). The negative effects of 

environmental pollutants on fish health are well known (Ghisi et al., 2014; Ribeiro et al., 2014). 
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Aquatic environment pollution compromises fish development due to adverse effects stemming from 

contact with xenobiotics. It is possible observing increase in the activity of detoxification enzymes such as 

glutathione S-transferase (GST) when this organism is exposed to a toxic compound. It happens to help 

eliminating this substance. Moreover, oxidative stress is one of the main effects caused by pollutants in fish, 

at cell level (Costa-Silva et al., 2015; Clasen et al., 2018), and it results from increase in reactive oxygen species 

(ROS) concentration due to imbalance between such compounds’ production and elimination from this 

organism. Oxidative stress can damage cell components (proteins and lipids) and disturb the normal 

functioning of the metabolism (Lushchak, 2011). Catalase (CAT) is an enzymatic antioxidant agent that turns 

hydrogen peroxide (H2O2) into O2 and water. This enzyme’s activity assessment is often reported as oxidative 

stress biomarker (Das et al., 2017; Amaral et al., 2018). Organisms get endogenous antioxidants and 

exogenous antioxidants, among them vitamins A, C, and E, carotenoids, flavonoids (Peterson, 2001), 

selenium (Menezes et al., 2013; Monteiro et al., 2009) and phytic acid (Harbach et al., 2007; da Costa et al., 

2021) through the ingested diet. Therefore, fish enzymatic and non-enzymatic antioxidant defense system, 

as well as detoxification enzymes, act to protect these organisms from the negative effects of aquatic 

contaminants like free radicals and ROS (Young & Woodside, 2001). 

Phytic acid (PA) is among the potential supplementation substances capable of improving the health 

condition of bred fish (da Costa et al., 2021). Studies have proven that although this vegetal component is an 

anti-nutritional compound, it has beneficial effects, such as antioxidant potential (Graf & Eaton, 1990; 

Harbach et al., 2007). PA antioxidant properties are related to its binding affinity with iron (Graf & Eaton, 

1990), whose chelation capacity renders this metal catalytically inactive, and it inhibits the induction of iron-

mediated hydroxyl radicals (•OH) production. Thus, it changes iron redox potential (Fe2+ to Fe3+) and quickly 

removes Fe2+ without any simultaneous •OH production. This process protects against cell damage because 

Fe2+, alone, leads to oxy-radicals and lipid peroxidation production, whereas Fe3+ is relatively inert (Graf et 

al., 1984, 1987). PA prevents Fe3+ from participating in the Fenton reaction after it binds to Fe ions in solution; 

consequently, •OH formation due to Fe2+ oxidation to Fe3+ does not happen during Fe2+ reaction with H2O2 or 

with peroxides (Bohn et al., 2008). However, little is known about the antioxidant effects of PA on fish.  

The development of nutritionally balanced diets is necessary to improve bred species development given 

the expansion of the fish farming activity (Rodrigues et al., 2020), it also aims at mitigating all stressor effects 

affecting fish performance, as much as possible. In addition, economically viable alternatives for diet 

supplementation at low cost for producers are a target. Thus, rice bran is a rice processing industry byproduct 

presenting high PA concentration in its composition (Canan et al., 2011, 2012). The Brazilian Southern region 

stands out in the country’s agricultural scenario for paddy rice cultivation (Rio Grande do Sul, 2020). 

Therefore, the waste generated by this industrial process let to the use of rice bran for other purposes. It 

became a sustainable and environmentally friendly alternative. The aim of the current study was to assess the 

antioxidant effect of a diet based on different concentrations of rice bran PA assessed through oxidative stress 

and detoxification biomarkers in C. carpio and R. quelen. 

Material and methods 

Diet composition 

Phytic acid (PA) used in the diet of the fish was acquired from a food factory through processing rice bran 

(Santa Maria, RS, Brazil). Four diets were formulated with different percentages of PA (0.5%, 1.0%, 1.5%, and 

2.0%), besides the feed used as the control (0.0% PA), based on the percentages used in previous studies 

(McClain & Gatlin, 1988; Usmani & Jafri, 2002). Diets were produced according to da Costa et al. (2021). The 

base diet composition was the same in all treatments, including the control, with 37% of crude protein, 3250 

kcal kg-1 of digestible energy, and 12% of lipids (Salhi et al., 2004). 

Animals 

Rhamdia quelen (4.8 ± 0.04 cm and 5.0 ± 0.05g) and Cyprinus carpio (9.0 ± 0.07 cm and 8.0 ± 0.08g) were 

obtained from a fish farm (Santa Maria, RS, Brazil) and acclimated in 250 L polyethylene boxes, with clean 

water, aeration, a filtration system, and constant temperature for ten days. Water quality variables such as 

ammonia, nitrite, and pH were analyzed periodically. In this phase, the animals were fed with commercial 

feed twice a day, at 9:00 AM and 5:00 PM. This study was approved by the Ethics Committee of the 

Universidade Federal de Santa Maria (protocol No. 8087140916). 
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Experimental design 

Separated by species, the fish were distributed randomly in 50 L tanks with clean water and with n = 9 in 

each. Both species were fed for fifty days with the feeds containing different percentages of PA. Treatment 1 

was composed of the control group, without the addition of PA in the diet composition (0.0% PA), while the 

diets in the other treatments were provided with 0.5, 1.0, 1.5, and 2.0% of PA, denominated 0.5% PA, 1.0% 

PA, 1.5% PA, and 2.0% PA, respectively, all in triplicate. After the experimental period, the animals were 

anesthetized with eugenol and euthanized by spinal cord sectioning. The hepatic tissues of C. carpio and R. 

quelen were collected and stored in liquid nitrogen for posterior biochemical analyses. 

Biochemical analyses 

The fish livers were homogenized with a 50 mM Tris-HCl buffer, pH 7.5, centrifuged at 1,400 g for 10 min, and 

the supernatant was used for the biochemical analyses. The biochemical analyses were modified for microplate, 

except for catalase (CAT). Glutathione S-transferase (GST) activity was measured following Habig et al. (1974) 

using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate and expressed as µmol GS-DNB min-1 mg-1 of protein. 

CAT activity was determined as per Aebi (1984) through the principle of the decrease in absorbance of hydrogen 

peroxide, metabolized by catalase, expressed as µmol min-1 mg-1 of protein. Regarding the oxidative damage, lipid 

peroxidation (LPO) was assessed by the quantification of one of its final products, malondialdehyde (MDA), 

through substances reactive to thiobarbituric acid (TBARS), as per Draper & Hadley (1990) and expressed in nmol 

MDA mg-1 of protein. Carbonyl protein (CP) content was analyzed according to Yan et al. (1995) and expressed in 

nmol carbonyl mg-1 of protein. The determination of the protein was carried out following Bradford (1976).  

Statistical analysis 

The data were tested regarding homogeneity by the Shapiro-Wilk test. The comparison among treatments 

was carried out using a one-way analysis of variance (ANOVA), followed by Tukey's test, to verify the 

difference in the biochemical responses related to the diets. The results were expressed as mean ± standard 

deviation, and the significance level considered was p < 0.05. 

Results 

Cyprinus carpio 

The activity of glutathione S-transferase (GST) and hepatic catalase (CAT) in C. carpio decreased at the 

concentration of 2.0% PA in comparison to the control (Figures 1A and 1B). The other treatments did not 

present significant differences from the control. With respect to oxidative damage, there was increase in lipid 

peroxidation (LPO) level in the liver at 2.0% PA (Figure 1C), whereas the carbonylated proteins (CP) content 

significantly decreased at all concentrations in comparison to the control (Figure 1D).  

 

Figure 1. A: Glutathione S-transferase activity; B: Catalase activity; C: Lipid peroxidation level; and D: Carbonylated protein content 

in the liver of Cyprinus carpio fed for fifty days with diets based on different phytic acid concentrations (0.5%, 1.0%, 1.5% and 2.0%). 

Different letters correspond to significant difference among the groups (P < 0.05). 
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Rhamdia quelen 

The activity of GST in R. quelen increased at 2.0% PA in comparison to the control (Figure 2A), whereas 

the CAT activity significantly decreased at 0.5% and 1.5% PA in comparison to the control (Figure 2B). LPO 

level in the liver significantly increased at 2.0% PA in comparison to the control (Figure 2C). There was no 

difference in CP content among all groups (Figure 2D).  

 

Figure 2. A: Glutathione S-transferase activity; B: Catalase activity; C: Lipid peroxidation level; and D: Carbonylated protein content 

in the liver of Rhamdia quelen fed for fifty days with diets based on different phytic acid concentrations (0.5%, 1.0%, 1.5% and 2.0%). 

Different letters correspond to significant difference among the groups (P < 0.05). 

Discussion 

Currently, the livestock sector seeks economically and environmentally viable alternatives for animal farming 

supplementation good enough to improve bred animals' health condition. Rice bran is a rice processing byproduct 

that could be used to enrich the diet of confined animals potentially exposed to contaminants such as fish, mainly 

due to the presence of PA in it. This compound could reduce the risk of increased reactive oxygen species (ROS) 

production or improve antioxidant defenses (da Costa et al., 2021) in fish bred in dams located in agricultural and 

residential areas given its chelating action upon binding to metals like iron. 

According to the present results, the enzymatic activity of GST and CAT increased after the ingestion of 

diets based on 0.5, 1.0 and 1.5% PA in C. carpio; however, there was no significant difference in comparison 

to the control. On the other hand, the diet based on 2.0% PA showed reduced activity of these enzymes, as 

well as significant increase in LPO level, i.e., increase in lipid peroxidation in the liver. CAT activity 

significantly decreased in the groups supplemented with 0.5 and 1.5% PA in R. quelen. GST activity increase 

took place along with increase in LPO levels after the diet based on 2.0% PA, in this same species. Accordingly, 

the addition of 2.0% PA in the diet of both carp and silver catfish led to negative effects, especially due to 

increase in hepatic LPO levels. LPO is a biochemical disturbance that emerges when the organism is under 

oxidative stress, since it can damage lipids in cells (Van der Oost et al., 2003). 

Phytase is the enzyme responsible for degrading PA and, consequently, for making it bioavailable. 

This enzyme is found in the intestines of fish such as grass carp (Ctenopharyngodon idella) (Huang et al., 

2009) and common carp (C. carpio) at small amounts; and in tilapia (Oreochromis niloticus) (Ellestad et 

al., 2002) in larger amounts. Furthermore, it is highly dependent on intestinal pH (Baruah et al., 2004). 

There may be differences in these organisms’ responses after PA is introduced in fish diet due to their 

distinct dietary habits, anatomy and physiology (Ferreira & Flora, 2017). Therefore, the supply of ideal 

PA concentrations in fish diet is extremely important, since this compound accounts for low digestibility. 

Yet, increase in water phosphorous compounds can end up causing environmental issues such as 

fishpond eutrophication (Baruah et al., 2004). 

PA effects on fish are also related to the concentration of this compound in fish diet due to its non-specific 

chelating action. Phytate has chelating action in combination to cations such as potassium, magnesium, 

calcium, zinc, iron and copper because of the high density of negatively charged phosphate groups, besides 
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the formation of complexes with proteins and amino acids that reduce these nutrients’ digestibility (Baruah 

et al., 2004; Bohn et al., 2008; Kumar et al., 2011) and compromise the availability of essential minerals 

(Denstadli et al., 2006). This nutritional deficiency entails various adverse effects on organisms (Ogino & 

Yang, 1978; Helland et al., 2006; Danwitz & Schulz, 2020). 

Fish species C. carpio and R. quelen present anatomical differences (they are agastric and gastric, 

respectively) assumingly related to different responses by the herein assessed biomarkers. Stomach pH is acid 

in most fish - it ranges from 2 to 4; however, food digestion happens in a more alkaline environment in gastric 

fish (Rotta, 2003). There are PA-degrading enzymes that work at high activity at acid pH values close to 5, 

whereas other enzymes get such an activity level in alkaline pH values close 8; however, most of these 

enzymes accomplish better activity in pH values ranging from 4 and 6 (Konietzny & Greiner, 2003). They are 

very sensitive to pH variations; very acid or very alkaline environments can make them irreversibly inactive 

(Scottá et al., 2014). Caps’ intestinal pH ranges from 6 and 7 (Rotta, 2003) and these values comply with the 

optimal pH for PA degradation by phytases. This finding can be related to the carbonyl protein content 

decrease observed in C. carpio due to likely better PA absorption and use. 

Conclusion  

Phytic acid (PA) addition to fish diet proved beneficial at concentrations up to 1.5%, mainly for reducing 

hepatic protein carbonylation in Cyprinus carpio. Furthermore, for economic and practical reasons, 0.5% PA 

is enough to supplement the C. carpio diet. The addition of the lowest PA concentration to the Rhamdia quelen 

diet changed the catalase activity; therefore, further studies are recommended to assess this change. 

Therefore, using rice bran PA becomes an economically viable alternative for C. carpio fish farming. Finally, 

the use of AF can partially mitigate the effects of oxidative stress induced by environmental contaminants in 

fish farming systems located in agricultural areas, although further studies are needed to confirm this 

application under direct exposure to pollutants. 
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