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ABSTRACT. The region adjacent to the River Plate is renowned for its fishing activity and abundant
biodiversity. Both are closely linked to the significant local river flows responsible for fertilizing extensive
marine areas. Among the several biological communities, micronekton deserves special attention as it
serves as a vital trophic link between primary production and top predators in the ecosystem. Recognizing
its importance, this study evaluates the spatio temporal variability of epipelagic micronekton biomass at
the mouth of the River Plate. Numerical modeling outputs of micronekton functional groups were obtained
from the Spatial Ecosystem and Population Dynamics Model (SEAPODYM), coupled with in situ
environmental data (precipitation, wind direction, and intensity) from 2015 to 2019. The results revealed
greater aggregations of epipelagic micronekton near the river mouth. There was a seasonal disparity in
micronekton biomass in the zone influenced by river drainage, with higher biomass values observed during
the summer and lower values during the winter. This seasonal difference was attributed to winds from the
northeast and southeast quadrants, as the micronektonic plume is susceptible to their effects. However,
precipitation data did not exhibit a significant correlation with in situ flow data nor with quantitative
micronekton measurements. This discrepancy may be attributed to the positioning of the data collection
stations relative to the dimensions of the mouth of the River Plate.
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Introduction

Micronekton consists of aquatic organisms ranging in length from 2 to 20 cm. Although taxonomically
diverse, micronekton primarily comprises small fish (including larvae and juveniles), cephalopods (such as
small species in juvenile stages), and crustaceans (adult euphausiids, pelagic decapods, and mysids) (Payri et
al., 2019; Phillips et al., 2009). Micronekton exhibits a heterogeneous distribution across all oceans, driven by
currents both horizontally and vertically, and can be found at depths of up to 1000 m within the water column
(Pearcy et al., 1977). These organisms conduct daily vertical migrations, exporting carbon through processes
such as respiration, excretion, and mortality, which collectively contribute to the biological pump (Hernan-
dez-Ledn et al., 2019; Hidaka et al., 2001). Moreover, this group holds significant relevance in maintaining
the trophic web, serving as prey for various epipelagic and nektonic predators, including tunas and sharks,
which adjust their migration patterns in response to the micronekton’s position in the water column. Marine
mammals and birds also benefit from the presence of micronekton in the aquatic environment (Bertrand et
al., 2002; Young et al., 2015).

Micronekton exhibits a global distribution in aquatic systems and is directly influenced by environmental
variations (Duffy et al., 2017). Hence, understanding the dynamics of factors such as precipitation, currents,
and winds is essential for elucidating the ecology of micronekton and its role in aquatic trophic networks
(Irigoien et al., 2014). Despite its environmental significance, the majority of studies on this subject focus on
shelf and ocean basin regions (Kloser et al., 2009), overlooking efforts to attain a deeper understanding of this
topic in transitional environments.

In this study, we analyzed the spatiotemporal composition of micronekton in the adjacent marine zone of
the River Plate, situated on the Atlantic coast at 35°S between Argentina and Uruguay (Nagy et al., 2008). This
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region comprises a complex hydrographic system where water masses from various sources converge, giving
rise to frontal systems characterized by significant spatiotemporal variability and high biological productivity.
Consequently, it serves as a habitat for commercially important species (Negri et al., 1986). The extent of this
environment’s impact on the adjacent marine areas depends on flow magnitude and wind intensity and di-
rection. Under such conditions, the river plume can extend nearly 900 km northeast of the estuary, affecting
other fishing areas south of Brazil (Piola et al., 2008).

The continental shelf adjacent to the River Plate estuary has been identified as a priority area for conservation
due to its ecological significance (Phillips et al., 2009). Consequently, developing strategies for the protection and
sustainable management of this area is crucial. Therefore, studies that examine the spatiotemporal dynamics of
micronekton in this region are imperative for promoting its sustainable use and management.

Considering the above, this study used outputs from the Spatial Ecosystem and Population Dynamics
Model (SEAPODYM) to assess fluctuations in micronekton biomass at the mouth of the River Plate.
SEAPODYM is an ecosystem model designed to simulate changes in abundance over time and space among
various lower (zooplankton) and middle (micronekton) functional groups, as well as target fish species ranging
from larvae to adults (Lehodey et al., 2008). These groups are delineated based on pelagic zones, with the
euphotic depth serving as a vertical delimiter, while net primary production serves as a key input parameter
for the model. Within this context, the objective of this study is to analyze whether the micronekton
community in the epipelagic zones is influenced by the mouth of the River Plate, and to evaluate the effects
of precipitation rates and the direction and intensity of winds on their aggregations.

Material and methods

The River Plate (Figure 1) is a large estuarine system located in a temperate coastal plain (Laborde & Nagy,
1999). It is characterized by shallow depths (~10 m) and a low tidal range (~1 m), factors that promote constant
vertical mixing (Simionato et al., 2004). The main driving forces of estuarine circulation include tides, winds,
and continental runoff (Dogliotti et al., 2016). The flow entering the estuary exhibits high variability, as
studied in various scenarios by Mechoso and Iribarren (1992) and Robertson and Mechoso (1998).

30°0'S
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Figure 1. Study area demonstrating the location of the transect at the mouth of the River Plate.

At the river mouth, there is a significant convergence between river discharge and marine waters from the
Atlantic Ocean, resulting in an extensive mixing zone with mixohaline characteristics (Acha et al., 2008).
These waters penetrate the estuary, forming a nearly permanent two-layer saline wedge structure whose
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degree of mixing may vary (Guerrero et al., 1997). The adjacent continental shelf features a gentle slope, with
its edge reaching depths of approximately 3,000 m (Herndndez-Molina et al., 2010). This region is highly
susceptible to the potential impacts of climate change, as well as the interannual natural effects of the El
Nino-Southern Oscillation (ENSO) phenomenon, which significantly influences coastal dynamics (Penalba &
Rivera, 2016; Sathicq et al., 2015).

The Spatial Ecosystem and Population Dynamics Model (SEAPODYM) is a numerical model that
characterizes the spatial and temporal dynamics of lower and middle trophic level populations (Senina et al.,
2020; Senina et al., 2022). This model incorporates mass values of a functional group of zooplankton and six
groups of micronekton (measured by wet weight), including both vertically migrating and non-migrating
species (which serve as prey for larger fish), across marine epipelagic and mesopelagic layers (Lehodey et al.,
2010; Lehodey et al., 2015). After obtaining the model outputs, a transect vector was designed to analyze
fluctuations at the mouth of the River Plate, centered at a latitude of 35.5°S and spanning from 56.5°W to 46°W.
This transect consisted of 53 analysis points distributed along the specified longitudes, covering the period from
January 1, 2015, to December 31, 2019 (five years), with a daily temporal resolution and spatial resolution of 1/12°.
The outputs used in this study were obtained from the Copernicus Marine Environment Monitoring Service
(CMEMS) (https://marine.copernicus.eu/), which has been previously validated in the scientific literature.

A total of 1,826 transects (one per day over five years) were processed using SEAPODYM, each consisting
of 53 points. The obtained profiles were categorized by season of the year (DJF — summer, MAM — autumn, JJA
- winter, and SON - spring) to identify seasonal patterns throughout the study period. Simultaneously, each
profile with 53 points was divided into two subclasses: (1) the zone influenced by the River Plate and (2) the zone
unaffected by the River Plate. This division between zones was determined along the same transect, considering
regions where the difference in micronekton biomass productivity was equal to or greater than 10 gm.

The Mann-Whitney nonparametric statistical test (at a 5% significance level) was conducted to identify
potential statistical differences between zones (1) and (2). Additionally, any statistical disparities between the
seasons of the year were assessed using the Kruskal-Wallis test. Supplementary graphs were created to aid
interpretation of results.

In situ data on accumulated monthly precipitation (in mm) and wind direction and intensity (in km.h!)
were obtained from the National Meteorological Service — Argentina (SMN) for the mouth of the River Plate
estuary. These data were used to gain a better understanding of the physical forcings primarily influencing
local micronekton concentrations.

Results

Figure 2 presents the results of the profiles grouped by station (as indicated by the dotted line in Figure 1). It is
evident that there is a significant difference (often exceeding 10 g m%) from longitude 53°W, indicating a distinct
boundary of influence of the River Plate estuary starting from this point toward higher longitudes (< 53°W).
Although the longitudinal distribution pattern of the profiles is similar, there is a higher abundance of micronekton
in the area under the influence of the River Plate during the summer months. On the other hand, the winter months
exhibit the lowest micronekton levels in the area influenced by the mouth of the River Plate.
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Figure 2. Micronekton profiles (mean and standard deviation — vertical gray bars) grouped by seasons.
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The boxplot graphs illustrate the micronekton values grouped by season for zones influenced and not
influenced by the mouth of the River Plate (Figure 3). These graphs depict average values of approximately 19
gm? in summer, around 16 gm™ in spring, 17.5 gm? in autumn, and roughly 14 gm2 in winter for regions
influenced by the mouth of the River Plate. Conversely, for unaffected regions, mean values of approximately
7.5 gm2 were observed in summer and spring, and about 6 gm in autumn and winter.
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Figure 3. Boxplot with micronekton values in two subclasses: (1) zone influenced by the River Plate and (2) zone not influenced by the
River Plate.

The Hovmoller diagram (see Figure 4), arranged on a daily scale, illustrates that the region influenced by
the mouth of the River Plate exhibits peaks in micronekton biomass exports reaching approximately 40 gm2.
Additionally, it is evident that the zone influenced by the River Plate estuary displays a fluctuating pattern
throughout the analyzed series.
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Figure 4. Hovmoller plot depicting 1,826 daily transects with maximum and minimum micronekton values in space and time.

To determine whether the disparities between the regions influenced and not influenced by the River Plate
are statistically significant, we conducted the paired Mann-Whitney test (at a 5% significance level). This
analysis corroborated the findings observed in Figures 2, 3, and 4, indicating a statistically significant
difference between the zones within the same profile (with and without river drainage influence) (Z = 9.44
and p-value < 0.00001, significant at p < 0.05).
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Following the aforementioned statistical test, we employed the Kruskal-Wallis test to assess whether there
are statistically significant differences among the regions influenced by the River Plate. Similar to the paired
test, the Kruskal-Wallis test indicates significant differences between seasons (H = 76.99 and p-value <
0.00001, significant at p < 0.05).

The wind directional field obtained from in situ data for the mouth of the River Plate during the study
period suggests an omnidirectional pattern across all seasons, with a predominant occurrence in the northeast
and southeast quadrants during autumn, spring, and summer (Figure 5).
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Figure 5. In situ wind data (direction and intensity) for the River Plate estuary.

Seasonal precipitation rates at the mouth of the River Plate reveal higher values during the summer period,
reaching approximately 285 mm, with mean values around 112 mm (Figure 6). Conversely, the winter period
exhibits contrasting dimensions to summer, with mean values of approximately 87 mm, also suggesting the
possibility of months without precipitation.
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Figure 6. Accumulated precipitation per season for the River Plate estuary.
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Discussion

The analyzed time series reveals changes in micronekton biomass as observations move away from the
coast. This pattern is consistent with Brodeur et al. (2003). Additionally, Eduardo et al. (2021) documented
reductions in myctophid catches with increasing depth, reflecting the lower availability of food in regions
farther from the coast (Aron, 1962).

The highest abundance of micronekton at the mouth of the River Plate was observed during the summer
months, while the lowest occurred during the winter months, indicating a distinct seasonal difference. This
pattern can be attributed to the life cycle of these organisms, which typically utilize shallower areas as nursery
grounds before migrating to more distant coastal regions (Gewant & Bollens, 2005).

Despite the precipitation data showing the highest values during the summer season (rainy season),
statistically, there was no significant correlation with micronekton biomass. The relationship between
precipitation and flows is complex, as highlighted by Garcia and Vargas (1998). Not all precipitation signals
are reflected in flow, and this relationship can be influenced by various factors such as basin size, terrain slope,
and soil type (Capozzoli et al., 2017). This complexity may explain the low correlation between flow and
precipitation in the mouth of the River Plate region, which has a vast spatial extent, further complicating
these correlations.

Approximately 8% of the ocean’s area is occupied by coastal zones and continental shelf waters, sustaining
25% of the total oceanic primary production due to nutrient fertilization from rivers, upwellings, and internal
remineralization of benthic-pelagic nutrients (Knoppers et al., 2009). The coastal zone, with its diverse
ecosystems, has a higher production yield per square meter than the open ocean, despite the latter being
responsible for most of the global primary production. However, it is the contributions from rivers like the
River Plate, combined with the influence of wind direction and intensity, that fertilize the southern region of
Santa Catarina (Ciotti et al., 1995).

Among the studies evaluating the variability of the fluctuating plume over time and space, the seasonal
fluctuation of the River Plate plume is associated with northeast winds in summer and southeast winds in
autumn and winter (Simionato et al., 2005), although wind stress from the southeast quadrant predominates
throughout the year (Moller et al., 2008). This finding is consistent with the results of this study: during
winter, there were larger aggregations of micronekton near the coast to the northeast. However, the trapping
of water masses due to the directional field of the northeast wind can explain the peaks of micronekton
biomass found in the summer months. Piola et al. (2008) found similar results for chlorophyll a, concluding
that a primary production hotspot forms in summer, while in winter, it extends to areas further to the
northeast, displaying vertically homogeneous concentrations along the water column.

The water surface temperature in the region near the mouth of the River Plate, which encompasses the
analyzed transect, exhibits a homogeneous character during both summer and winter (Moller et al., 2008).
This characteristic explains the higher aggregation of micronekton near the mouth compared to more distant
continental regions. Additionally, due to its proximity to the continent-ocean interface, this area tends to have
a higher concentration of nutrients compared to regions farther from the shelf (Knoppers et al., 2009), which
also affects salinity.

River flow, the Coriolis force, and the balance between onshore and offshore winds control the distribution
of surface salinity (Piola et al., 2008; Simionato et al., 2001), which in turn is correlated with micronekton
aggregation. In the region of the studied transect, spanning from the city of Mar del Plata to the outer estuary
of the River Plate, there is an area with homogeneous salinity (Méller et al., 2008), which may also account for
the larger micronekton biomass near the mouth of the River Plate at the longitude threshold of -53°W.

Micronekton plays a fundamental role in the dynamics of the epipelagic food web, underscoring the im-
portance of understanding its connections with trophic levels at the top of the chain to define ecologically
significant areas and aid in the management of marine environments (Santora et al., 2012). A recent study by
Duffy et al. (2017) unveiled, for the first time, the global extent of tuna diet on the micronekton community,
demonstrating that squid was consistently one of the most consumed prey groups by tuna species. However,
other commercially important coastal species also prey on this community, such as Cynoscion guatucupa, doc-
umented in the study by Negri et al. (2016), and Merluccius hubbsi reported in the study by Sdnchez and Garcia
(1999), where the diet consisted of zooplankton crustaceans, fish, and cephalopods, with dietary shifts linked
to predator size. Additionally, in the work by Junior et al. (2006), euphausiids were described as the primary
prey in the feeding habits of Elagatis bipinnulata.
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The study suggests that micronekton aggregation fields may be associated with potential preferred
habitats for pelagic species at higher trophic levels (Bertrand et al., 2002; Delpech et al., 2020; Duffy et al.,
2017; Lehodey et al., 2008; Senina et al., 2020). Therefore, understanding where micronekton aggregates and
elucidating how their biomass fluctuates in space and time are essential aspects for gaining insight into fish
spatial occupation strategies and trophic interactions between species.

Conclusion

The results obtained from numerical modeling outputs, when combined with other environmental data,
can help identify preferential zones for micronekton hotspots.

The in situ observations of precipitation data did not statistically demonstrate a positive correlation with
the increase in micronekton abundance in the zone influenced by the River Plate. However, by analyzing wind
data alongside theoretical principles, it was possible to elucidate the seasonal variation in micronekton
biomass in the region. Thus, the findings presented here align with existing literature: during winter,
micronekton biomass extends northward due to winds from the southeast quadrant. Conversely, in summer,
micronekton biomass in the River Plate region partially extends southwestward due to winds from the
northeast quadrant.

It is crucial to underscore that studies on trophic links in the region of the River Plate estuary are essential
for enhancing our understanding of the distribution and abundance of local ichthyofauna, thereby aiding
marine management efforts. We believe that the present study can help bridge the information gap regarding
micronekton biomass at the mouth of the River Plate to some extent.
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