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ABSTRACT. The aim of this study was to evaluate the antioxidant activity of 17 strains of lactic acid 

bacteria isolated from traditionally fermented durum wheat. In vitro tests were caried out: resistance to 

hydrogen peroxide, total phenolic compounds, DPPH and superoxide anion radicals scavenging assay, and 

finally, ferric reducing antioxidant power. The greatest resistance to hydrogen peroxide was observed in LS09, 

LS10, and LS17 strains. Among these three strains, the highest content of phenolic compounds was registered in 

LS17, this strain presented also the highest reducing power activity. Furthermore, the highest ability to scavenge 

the DPPH radical was observed in LS10, to scavenge superoxide anion radical was in LS09. Moreover, the use of 

natural antioxidant can be used in food processing to limit the use of chemical antioxidants.  
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Introduction 

An imbalance between increased creation of reactive oxygen species (ROS) and/or free radicals and their 

elimination by antioxidant systems is the cause of oxidative stress, which is a situation in which an organism 

exhibits excessive ROS activity (Jomova et al., 2023; Zhang et al., 2023; Averill-Bates, 2024). Known as 

oxidative eustress or "good stress," a physiological level of ROS is defined by low to moderate concentrations 

of oxidants that are involved in the control of numerous metabolic processes. An unhealthy state known as 

oxidative stress, or "bad stress," is brought on by elevated amounts of ROS, which can be produced by 

endogenous or exogenous sources (Jomova et al., 2023). 

ROS are molecules with one or more unpaired electrons and at least one oxygen atom that can exist on 

their own. This category includes oxygen free radicals such as superoxide anion radical, hydroxyl radical, 

hydroperoxyl radical (Jakubczyk et al., 2020). On the other hand, excessive ROS production causes redox 

equilibrium to be upset, which then causes oxidative stress and ROS-mediated damage to all significant 

molecules, particularly proteins, DNA, and membranes (Ghosh et al., 2018; Liguori et al., 2018; Checa & Aran, 

2020; Juan et al., 2021). Conversely, in stressful situations, ROS produce pro-inflammatory molecules, this 

leads to inflammation, which is a major factor in aging and the development of various diseases (Srivastava 

& Kumar, 2015). These include cancer, liver and vascular disorders, and cardiac, autoimmune, 

neurodegenerative, and respiratory diseases (Aldosari et al., 2018; Glennon-Alty et al., 2018; Yang & Lian, 

2020; Zuo & Wijegunawardana, 2021; Rudrapal et al., 2022). 

Cells have an efficient endogenous antioxidant system which is made up of enzymatic antioxidants like 

superoxide dismutases (SODs), catalase (CAT), glutathione peroxidases (GPXs) and thioredoxin (Trx) 

(Halliwell, 2022) and non enzymatic molecules, such as: proteins with thiol or phenolic groups (glutathione), 

melatonin, coenzyme Q10 (Sharifi-Rad et al., 2020; Losada-Barreiro et al., 2022; Sangouni et al., 2022). 

Exogenous antioxidant compounds like vitamin C, vitamin E, and carotenoids, play a crucial role in many 

antioxidant processes in living organisms. They act synergistically with endogenous antioxidants to preserve 

or restore redox equilibrium (Sharifi-Rad et al., 2020). Other natural antioxidants like: phenolic compounds, 

protect the cell from the damage caused by free radicals (Losada-Barreiro et al., 2022). 

The rise in diseases that plague society has made it necessary to look for safe antioxidants that can boost 

the body's antioxidant reserves. According to scientific studies, some lactic acid bacteria (LAB) have a potent 
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antioxidant effect and lessen the oxidative damage that stress causes to the body (Noureen et al., 2019; Yang 

et al., 2021).  

The antioxidant activity of LAB has attracted a lot of attention in recent years (Hu et al., 2023; Łepecka 

et al., 2023; Rwubuzizi et al., 2023; Vougiouklaki et al., 2023). Although the precise antioxidant mechanism 

of LAB is still unclear, it was shown that these LAB possess antioxidant properties. They can scavenge a certain 

amount of ROS, protect against free radicals, and control the oxidative stress by upregulating the activity of 

antioxidant enzymes in the host and downregulating the activity of enzymes linked to the formation of ROS 

(Amaretti et al., 2013; Tang et al., 2017; Shi et al., 2019).  

The aim of this study is to determine the antioxidant activities for some LAB strains isolated from 

underground stored durum wheat by using different in vitro tests.  

Material and methods 

Lactic acid bacteria 

A total of 17 strains of LAB isolated from traditionally fermented wheat were used in this study. They were 

previously assessed for Gram staining and catalase testing. The strains were kept at - 20°C in presence of 20% 

glycerol and sub-cultured in MRS broth at 37°C for 24 hours right before every experimental procedure.  

Intact cells and free cell supernatant preparation 

For each analysis, 0.5 mL of the lactic acid strain adjusted to McFarland 5 (11 log CFU mL-1) was transferred 

to Eppendorf tubes and centrifuged at 13,000 rpm for 15 min. After the centrifugation, the pellet suspended 

in 1 mL of phosphate-buffered saline (PBS) was used to carry out the various tests. While the supernatant 

obtained has been used for the determination of total phenolic content (Düz et al., 2020). 

In vitro determination of antioxidant potency 

Hydrogen peroxide (H2O2) resistance test 

The method described by Li et al. (2012) was used, with some modifications. The overnight cultures of 

lactic strains were inoculated at 2% (vol/vol) into MRS broth as a control group, and MRS broth containing 0.5 

or 1.0 mM of H2O2 separately as a sample group. Both control and sample groups were incubated at 37°C for 8 

hours. The growth of LAB was measured by a spectrophotometer at 600 nm. The test was carried out in triplicate. 

The following formula was used to determine the survival rate (%) of lactic acid strains damaged by H2O2:  

Survival rate (%) = (As/Ac) ×100 %; 

As: The absorbance of the sample group; Ac: The control absorbance. 

Scavenging of DPPH free radical 

The DPPH radical scavenging activity of lactic strains was determined according to the procedure of Düz 

et al. (2020). Briefly, 1 mL of a freshly prepared DPPH solution (0.05 mM in ethanol) was added to the intact 

cell samples prepared with suspension in 1 mL of PBS in Eppendorf tubes. Samples were kept in darkness at 

room temperature for 1 hour. After incubation, samples were centrifuged at 13,000 rpm for 10 minutes and 

the percentage of DPPH radical scavenging capacity was measured spectrophotometrically at 517 nm. 1 mg 

mL-1 ascorbic acid was used as a positive control. The DPPH radical scavenging activity (%) of strains was 

calculated as follows: Scavenging activity (%) = [1- (Asample - Ablind) / Ablank] x 100, 

Blind: PBS solution; Blank: PBS and DPPH solutions. 

Scavenging activity of superoxide anion radical 

The superoxide anion radical scavenging activity was determined using pyrogallol autoxidation method 

(Wu et al., 2014). First, 4.5 mL of Tris-HCl solution (0.05 M, pH 8.2) was mixed with 0.1 mL of the strain, 

adjusted to McFarland 5 concentration. The reaction mixture was then incubated for 20 min. at 25°C in a 

water bath. After that, 0.4 mL of 0.25 M pyrogallol (preheated to 25°C) was added, and the mixture was 

incubated for 4 min. at 25°C. Finally, to stop the reaction, 0.1 mL of HCl (8 M) was added. Absorbance was 

measured at 320 nm. The control included an equal quantity of 0.05 M Tris-HCl buffer (pH 8.2) to replace the 

sample. 1 mg mL-1 ascorbic acid was used as a positive control. Scavenging activity of the superoxide anion 

radical was calculated as follows: 
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Superoxide anion radical scavenging (%) = [(A0 – A1) / A0] x 100; 

A0: Absorbance of the sample; A1: Absorbance of the solution without the sample. 

Determination of total phenolic content 

An aliquot (1 mL) of the previously prepared lactic acid strain supernatant was introduced in a test tube 

with 5 mL of 0.5 M Na2CO3 solution and mixed briefly with 1 ml of Folin-Ciocalteu reagent. The mixture was 

left to rest for 30 min. The supernatant's absorbance was measured at 725 nm, and the results were expressed 

as micrograms gallic acid equivalent (GAE)/g (Livinska et al., 2016).  

Ferric reducing antioxidant power (FRAP) 

The reducing power was measured using the method described by Zhang et al. (2017). A mixture of 0.5 mL 

of the lactic acid strain, 0.5 mL of potassium ferricyanide solution (1%, W/V), and 0.5 mL of phosphate-

buffered saline (PBS, 0.2 M; pH 6.6) was prepared. Then incubated in a water bath at 50°C for 20 min. The 

mixture was quickly cooled to room temperature and a solution of trichloroacetic acid (10%, p/v) was added. 

After centrifugation at 1399 × g for 5 min, an aliquot of the supernatant (1 mL) was combined with 1 mL of 

distilled water and 0.2 mL of ferric trichloride (0.1%, w/v). The mixture's absorbance (As) at 700 nm was 

calculated by comparing it to a blank sample (Ab) that was replaced with PBS. The percentage of reducing 

power was calculated as follows: 

Reducing power (%) = (As − Ab)/Ab×100; 

As: The absorbance of the sample group; Ab: The absorbance of the blank. 

Statistical analysis 

The results were presented as a mean ± standard deviation (SD), performed with Microsoft Excel (Microsoft 

Corporation, 2019). The correlation between the values obtained with the measurement methods was 

analyzed by Pearson correlation analysis at p < 0.05. The correlation matrices were assessed by Microsoft 

Excel (Microsoft Corporation, 2019). In addition, comparison of the measurements obtained by 

microorganism type was conducted with one-way ANOVA using SPSS software version 22.0 for Windows.  

Results and discussion 

Resistance to hydrogen peroxide 

The results of the lactic strains’ resistance to hydrogen peroxide are shown in Table 1. 

Table 1. The survival rate of 17 strains of lactic acid bacteria (LS01-LS17) in MRS medium at 0.5 and 1mM of H2O2 solution. 

Lactic strain Survival at 0.5 mM H2O2 (%) (***) Survival at 1.0 mM H2O2 (%) (***) 

LS01 48.02 ± 1.20 31.17 ± 0.29 

LS02 40.11 ± 0.53 32.00 ± 0.43 

LS03 41.32 ± 4.33 31.55 ± 0.26 

LS04 42.96 ± 1.14 31.45 ± 0.00 

LS05 39.49 ± 0.83 28.36 ± 1.01 

LS06 42.44 ± 0.40 33.03 ± 6.09 

LS07 35.79 ± 1.29 30.31 ± 1.23 

LS08 39.46 ± 1.35 28.81 ± 0.68 

LS09 50.58 ± 1.03 36.09 ± 2.67 

LS10 64.44 ± 0.59 36.01 ± 1.80 

LS11 39.75 ± 0.37 25.59 ± 6.32 

LS12 45.31 ± 0.34 33.26 ± 0.18 

LS13 33.21 ± 0.04 26.69 ± 0.24 

LS14 40.2 ± 1.15 32.76 ± 0.56 

LS15 26.59 ± 0.34 21.11 ± 0.36 

LS16 38.82 ± 3.05 27.75 ± 0.75 

LS17 52.21 ± 0.00 33.9 ± 0.00 

*** P = 0.000. 

In this study, all strains were tested for survival under two concentrations of hydrogen peroxide (Table 1). When 

strains were exposed to 0.5 mM H2O2. Survival rates varied between 26.59 ± 0.34% and 52.21± 0.00%. When they 

were exposed to 1.0 mM H2O2, survival rates varied between 21.11 ± 0.36% and 36.09 ± 2.67% (P = 0.000***). 
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A previous study by Mu et al. (2018) showed that different concentrations of H2O2 might inhibit the growth 

of six strains of lactobacilli. Indeed, for the strains exposed to 0.5 mM H2O2, survival rates ranged from 72.67 

to 91.05%. And when they were exposed to 1.0 mM H2O2, survival rates ranged from 30 to 50%. 

Hydrogen peroxide may easily pass through cell membranes and damage DNA, proteins, and lipids 

causing oxidative stress (Mishra et al., 2015). Despite its low toxicity, it is involved in the formation of 

ROS such as hydroxyl radicals that cause damage in cells. Bacteria that have a catalase are highly resistant 

to H2O2, but LAB in general, and as our study shows, have a low resistance to H2O2 due to the absence of 

this activity (Tang et al., 2017). Decreased growth rates indicate that the presence of peroxide causes 

damage to the bacterial cell (Wang et al., 2006). 

Strains with high resistance to hydrogen peroxide were selected for the other tests of antioxidant activity, 

these were the coded strains LS09, LS10, and LS17.  

Determination of phenolic content 

The determination of total phenolic content produced by lactic acid bacterial strains was carried out 

according to the Folin-Ciocalteu method. Phenolic compounds reduce the Folin-Ciocalteu reagent by giving 

a blue coloration proportional to the phenolic compounds present in the reaction medium. 

The obtained results are shown in Figure 1. According to this figure, we found that the three strains 

produced phenolic substances with different rates ranging from 1.24 ± 0.002 µg GAE g-1 to 1.28 ± 0.04 µg  

GAE g-1 for LS10 and LS17, respectively.  

 

Figure 1. Results of phenolic content of lactic strains (LS09, LS10 and LS17) using Folin-Ciocalteu assay. 

According to Skorokhod and Kurdysh (2014), only plants and microorganisms are capable of synthesizing 

precursors of phenolic compounds. Livinska et al. (2016) investigated the production of polyphenols by some 

lactic acid bacteria in different media. They showed that the majority of them (> 90%) produced phenolic acids 

in cucumber juice. Only three strains were able to produce phenolic acids in all the tested media. These strains 

were also characterized by high antioxidant activity. Plant-derived strains have been found to produce 

phenolic compounds only when grown on cucumber but were not capable of producing these compounds in 

milk or MRS medium. According to these researchers, the production of phenolic compounds depends on the 

strain itself as well as its origin.  

LAB are capable of producing phenolic compounds as an end product during fermentation; this ability is 

strain-specific. The increase of phenolic compounds during enzymatic hydrolysis of lactic acid bacteria during 

fermentation leads to an increase in antioxidant activities (Muñoz et al., 2016).  

2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging test 

For the evaluation of the antioxidant activity of a compound or bacterial cell, several methods are 

highlighted, all based on radical trapping. The most widely used is the radical DPPH because of its ease, speed, 

sensitivity and reproducibility compared to other methods (Prior et al., 2005). The DPPH method is commonly 

used in antioxidant activity studies, where an increase in activity is proportional to the suppression of the 

purple color formed when the DPPH radical is added to the medium.  
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2,2-diphenyl-1-picrylhydrazyl (DPPH) radical results show a highly significant difference (p = 0.000***) 

between samples. These results are shown in Figure 2. According to this figure, the three strains had the 

ability to scavenge the radical DPPH, the rate of this scavenging activity varied between 55.00 ± 0.02% and 

93.75 ± 0.77%. The strain LS10 showed the highest radical scavenging activity (93.75 ± 0.77%) followed by 

LS17 (92.0 ± 1.27%). The LS09 strain has the lowest radical scavenging activity with a percentage of 55 ± 

0.02%. Scavenging activities of LS10 and LS17 strains are very close to that of ascorbic acid (93.91 ± 0.00%). 

Our results were in agreement with those from the study of Düz et al. (2020), who showed that DPPH radical 

scavenging activities in lactic acid bacterial strains varied between 90.34 and 58.38%. Thus, L. plantarum 

IH14L showed the highest activity (90.34 ± 0.40%). 

 

Figure 2. Results of DPPH scavenging activity of lactic acid bacterial strains (LS09, LS10 and LS17). AA: ascorbic acid. 

On the other hand, our study's results confirm that the lactic acid strains demonstrated significant 

antioxidant activity. This contrasts with the findings of Zhang et al. (2017), who reported DPPH radical 

scavenging percentages ranging from 49.48 to 59.67% for the strains L. curvatus SR6 and L. paracasei SR10-1, 

respectively. Similarly, the results reported by Łepecka et al. (2023) were much lower, ranging from 1.19 to 

36.05%. Additionally, Arasu et al. (2016) observed a scavenging activity of only 48.63% for L. brevis P68, 

isolated from gherkins. The highest scavenging activity, 85.24%, was recorded by Rwubuzizi et al. (2023) for 

Streptococcus salivarius strain ST59HK. 

Previous studies have demonstrated that the antioxidant activity of some lactic strains may be associated 

with the production of cell surface compounds such as exopolysaccharides (Feng & Wang, 2020), bioactive 

peptides, antioxidant enzymes, and manganese ions (Davis & Milner, 2009). In addition, Talib et al. (2019) 

reported that the DPPH radical scavenging of Lactobacillus strains isolated from kefir is related to the content 

of total phenolic and total flavonoid. Recent studies confirmed that the significant increase in phenolic 

compounds of LAB during fermentation of healthy drinks increase the ability to capture DPPH radical (Kuo 

et al., 2021; Li et al., 2021). Furthermore, Alkalbani et al. (2019) reported that the DPPH levels can be 

associated with peptides released as a consequence of proteolysis. 

Superoxide anion radical scavenging activity 

The results of the superoxide anion scavenging activity are represented in Figure 3. According to this 

figure, the three lactic strains have the ability to capture the superoxide anion radical. We noted a scavenging 

rate ranged from 53.62 to 55.71% attributed to the strains coded BL17 and BL09, respectively. These results 

are very close to that of vitamin C (61.08 ± 2.55%). 

Ji et al. (2015) investigated the antioxidant activity of some strains of Leuconostoc sp. They determined 

that these strains had greater than 35% scavenging activity. Düz et al. (2020) noted percentages of superoxide 

anion scavenging ranging from 7.22 ± 0.04% and 21.63 ± 1.32%. Based on these results, it is clear that the 

three strains tested in our work presented high antioxidant activity. The ability to trap the superoxide anion 

by the lactic strains could be related to their production of exopolysaccharides (EPS). Indeed, these EPSs are 

known by their antioxidant activity because they exhibit free radical scavenging and metal chelation activities 

(Feng & Wang, 2020). 
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Figure 3. Results of superoxide anion scavenging rate of the lactic strains (LS09, LS10, and LS17). AA: ascorbic acid. 

Reducing power 

This method is based on the ability of the tested strains to reduce ferric iron (Fe3+) to ferrous iron (Fe2+). 

The mechanism is known as an indicator of giving electrons activity, characteristic of the antioxidants action. 

The obtained results in this work (Figure 4) were significantly different (P = 0.001**). According to this figure, 

the three lactic strains were able to reduce ferric iron (Fe3+) to ferrous iron (Fe2+). The best result was recorded 

in the LS17 strain (33.95%) followed by LS09 (31.21%) and LS10% (23.09%). The levels of reducing power 

registered in our work were lower to those found by Zhang et al. (2017) which demonstrated that L. curvatus 

SR6 and L. paracasei SR10-1 exhibited a reducing power of about 47.31 and 44.24%, respectively. Furthermore, 

Düz et al. (2020) reported metal (Fe+2) ion chelating effects between 20 and 75% for all tested strains. Also, 

values between 66 and 87% were recorded in the study of Rwubuzizi et al. (2023). 

 

Figure 4. Results of reducing power of lactic strains (LS09, LS10 and LS17). AA: ascorbic acid. 

Iron is involved in the formation of free radicals because of Fenton reactions, which lead to the production 

of the extremely toxic radical (HO̊) (Talib et al., 2019). The chelating activities of LAB may be associated with 

the physiological chelators mapped on the bacterial cell wall (Lin & Yen, 1999). It was reported that the 

antioxidant activity in LAB is associated with the expression of iron binding protein (Yamamoto et al., 2002). 

Relationship between phenolic compounds and antioxidant activity of lactic acid bacteria 

The relationship between total phenolic content (TPC) and antioxidant capacity (DPPH and superoxide anion 

radical (SAR) scavenging activity and reducing power (RP)) was evaluated by the Pearson correlation (Table 2). TPC 

is positively and significantly correlated with RP (** r = 0.81). Indeed, negative correlations were registered between 

TPC and survival at 1 mM H2O2 and scavenging activity of SAR (r = -0.97; r = -0.74, respectively).  

According to Dobrinas et al. (2021), Osman et al. (2021), and Lyu et al. (2022), the types and quantities of 

phenolic compounds might contribute to the varying antioxidant activity. The relationship between 

antioxidant activity and total phenolic content can be influenced by various factors. Total phenolic content, 
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in fact, does not account for all present antioxidants. It is important to consider the synergistic interactions 

among the antioxidants in a mixture, as antioxidant activity depends not only on concentration but also on 

the structure and interactions between the different antioxidants (Piluzza & Bullitta, 2011). 

Some relationships were also recorded between some parameters. For instance: high positive correlation 

between survival at 1 mM H2O2 and SAR scavenging activity (r = 0.87), and between survival at 0.5 mM H2O2 

and DPPH (r = 0.62). Also, survival at 0.5 mM and 1 mM H2O2 correlated negatively with RP (r = *-0.93 and -

0.67, respectively). DPPH presented significant negative correlation with SAR scavenging activity (r = -0.85). 

Table 2. Pearson’s correlations between antioxidant activities measured using different assays and total phenolic contents. 

  TPC 0.5 mM H2O2 1 mM H2O2 DPPH SAR RP 

TPC 1      
0.5 mM H2O2 ns-0.56301 1     
1 mM H2O2 ns-0.97709786 ns0.3742552 1    

DPPH ns0.29684677 ns0.62207025 ns-0.49324727 1   
SAR ns-0.74839973 ns-0.12678478 ns0.8723926 ns-0.85551217 1  
RP **0.81390088 *-0.93840493 ns-0.67162877 ns-0.31321123 ns-0.22377366 1 

TPC: total phenolic content, DPPH: 2,2-diphenyl-1-picrylhydrazyl, SAR: Superoxide anion radical, RP: ferric reducing power, ** indicates significant 

difference at P < 0.01, * indicates significant difference at P < 0.1, ns: not significant. 

Conclusion 

This study demonstrated that LAB strains isolated from fermented wheat products exhibited varying levels 

of antioxidant activity. These antioxidant properties could potentially be applied in the future to inhibit food 

oxidation processes. As a result, the use of natural antioxidants may help reduce or even eliminate the need 

for chemical antioxidants. Additionally, it would be valuable to extend this research through an in vivo study 

using animal models subjected to oxidative stress. By treating these animals with LAB and assessing their 

oxidative stress levels, further insights could be gained into the potential therapeutic effects of LAB in 

mitigating oxidative damage. 
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