Effect of thymol on planktonic and biofilm cells in drinking water: An anti-cryptosporidium effect

  • Chaimae Imane Sennouni University Sidi Mohammed Ben Abdellah https://orcid.org/0000-0001-5166-0998
  • Mounia Oukhouia University Sidi Mohammed Ben Abdellah
  • Samira Oukhouia University Sidi Mohammed Ben Abdellah
  • Imane Jabeur University Sidi Mohammed Ben Abdellah
  • Fouzia Chami University Sidi Mohammed Ben Abdellah
  • Adnane Remmal University Sidi Mohammed Ben Abdellah
Palavras-chave: thymol, protozoa, Cryptosporidium oocysts, biofilm, poultry farming, water supply.

Resumo

There is a consensus that biofilm shows resistance to antimicrobial agents, especially in poultry farming. The current study assesses how thymol's antiparasitic properties affect the load of parasites, particularly Cryptosporidium oocysts load, in chicken drinking water. The first experiment used microscopic counting to evaluate in vitro the anti-cryptosporidium activity of NPEB (a thymol-based product) on drinking water samples. Thymol was added to samples in increasing doses (1, 2, and 4 g L-1 of NPEB). The anti-cryptosporidium efficacy in vitro was dose-dependent (p < 0.05, p < 0.01, and p < 0.001). Moreover, the antibiofilm efficiency of the thymol-based product against protozoan biofilm (Cryptosporidium oocysts) was tested using an experimental arrangement simulating the water supply system in poultry farming. In order to do that, we conducted two preventive and curative tests utilizing two distinct product concentrations (1 and 2 g L-1). A greater reduction was shown for the concentration 2 g L-1, which is in the order of three logarithmic units. The removed water from treated pipes with thymol (1 g L-1 of the product) showed a significant decrease (p < 0.05) in the curative study as compared to controls. However, after just 24 hours of treatment, the amount of 2 g L-1 treated pipes was significantly reduced (p < 0.01).

Downloads

Não há dados estatísticos.

Referências

Abdallah, M., Chataigne, G., Ferreira-Theret, P., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N. E. (2014). Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Applied Microbiology and Biotechnology, 98, 2597-2607. https://doi.org/10.1007/s00253-013-5479-4

Azadbakht, M., Chabra, A., Akbarabadi, A. S., Motazedian, M. H., Monadi, T., & Akbari, F. (2020). Anti-parasitic activity of some medicinal plants essential oils on Giardia lamblia and Entamoeba Histolytica, in vitro. Research Journal of Pharmacology, 7(1), 41-47. https://doi.org/10.22127/rjp.2019.168142.1462

Berlanga, M., & Guerrero, R. (2016). Living together in biofilms: the microbial cell factory and its biotechnological implications. Microbial Cell Factories, 15, 1-11. https://doi.org/10.1186/s12934-016-0569-5

Correa, R. S. (2020). Apparatus and method for producing and maintaining hygienic drinking water within a poultry / animal husbandry facility? No. 16/787,120. Poultry EcoServices , LLC.

Corcoran, M., Morris, D., De Lappe N., O'Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507-1514. https://doi.org/10.1128/AEM.03109-13

Daniels, M. E., Smith, W. A., Schmidt, W. P., Clasen, T., & Jenkins, M. W. (2016). Modeling Cryptosporidium and Giardia in ground and surface water sources in rural India: associations with latrines, livestock, damaged wells, and rainfall patterns. Environmental Science & Technology, 50(14), 7498-7507. https://doi.org/10.1021/acs.est.5b05797

Didehdar, M., Chegini, Z., Tabaeian, S. P., Razavi, S., & Shariati, A. (2022). Cinnamomum: The new therapeutic agents for inhibition of bacterial and fungal biofilm-associated infection. Frontiers in Cellular and Infection Microbiology, 12(930624), 1-19. https://doi.org/10.3389/fcimb.2022.930624

Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric protozoa in the developed world: a public health perspective. Clinical Microbiology Reviews, 25(3), 420-449. https://doi.org/10.1128/CMR.05038-11

Hriouech, S., Akhmouch, A. A., Tanghort, M., Chefchaou, H., Mzabi, A., Chami, N., & Remmal, A. (2020). In vitro and in vivo comparison of changes in antibiotics Susceptibility of E. coli and chicken’s intestinal flora after exposure to amoxicillin or thymol. Veterenery Medecine International, 2020,1-10. https://doi.org/10.1155/2020/8824008

Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horiuk, Y., & Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 5(11), 26-33. https://doi.org/10.15587/1729-4061.2017.110488

Liu, S., Gunawan, C., Barraud, N., Rice, S. A., Harry, E. J., & Amal, R. (2016). Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environmental Science & Technology, 50(17), 8954-8976. https://doi.org/10.1021/acs.est.6b00835

Maes, S., Vackier, T., Huu, S. N., Heyndrickx, M., Steenackers, H., Sampers, I., Raes, K., Verplaetse, A., & De Reu, K. (2019). Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiology, 19(77), 1-15. https://doi.org/10.1186/s12866-019-1451-5

Miranda, A. C., Leães, G. F., & Copetti, M. V. (2022). Fungal biofilms: insights for the food industry. Current Opinion in Food Science, 46, 100846. https://doi.org/10.1016/j.cofs.2022.100846

Puiu, R. A., Dolete, G., Ene, A. M., Nicoară, B., Vlăsceanu, G. M., Holban, A. M., Grumezescu, A. M., & Bolocan, A. (2017). Properties of biofilms developed on medical devices. In Biofilms and implantable medical devices (pp. 25-46). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100382-4.00002-2

Remmal, A., Achahbar, S., Bouddine, L., Chami, N., & Chami, F. (2011). In vitro destruction of Eimeria oocysts by essential oils. Veterinary Parasitology, 182(2-4), 121-126. https://doi.org/10.1016/j.vetpar.2011.06.002

Remmal, A., Achahbar, S., Bouddine, L., Chami, F. and Chami, N. (2013). Oocysticidal effect of essential oil components against chicken Eimeria oocysts. International Journal of Veterinary Medicine, 2013, 1-8. https://doi.org/10.5171/2013.599816.

Reuben, R. C., Roy, P. C, Sarkar, S. L., Ha, S. D., & Jahid, I. K. (2019). Multispecies interactions in biofilms and implications to safety of drinking water distribution system. Microbiology and Biotechnology Letters, 47(4), 473-486. https://doi.org/10.4014/mbl.1907.07007

Ryley, J. F., Meade, R., Hazelhurst, J., & Robinson, T. E. (1976). Methods in coccidiosis research: separation of oocysts from faeces. Parasitology, 73(3), 311-326. https://doi.org/10.1017/S0031182000046990

Sennouni, C., Oukhouia, M., Jabeur, I., Hamdani, H., Chami, F., & Remmal, A. (2018). Antibacterial effect of thymol on poultry drinking water: In vitro and in vivo study. World Journal of Advance Health Research, 2(4), 231-237.

Sikder, M. N. A., Xu, H., & Warren, A. (2020). Colonization features of marine biofilm-dwelling protozoa in Chinese coastal waters of the Yellow Sea. Marine Life Science & Technology, 2(3), 292-301. https://doi.org/10.1007/s42995-020-00040-4

Stojanov, I. M., Prodanov-Radulović, J. Z., Pušić, I. M., Jakšić, S. M., Živkov-Baloš, M. M., & Ratajac, R. R. (2017). Farm water as a possible source of fungal infections. Zbornik Matice Srpske za Prirodne Nauke, 133, 299-305. https://doi.org/10.2298/ZMSPN1733299S

Tanghort, M., Chefchaou, H., Mzabi, A., Moussa, H., Chami, N., Chami, F., & Remmal, A. (2019). Oocysticidal effect of essential oils (EOs) and their major components on Cryptosporidium baileyi and Cryptosporidium galli. International Journal of Poultry Science, 18(10), 475-482. https://doi.org/10.3923/ijps.2019.475.482

Tasdemir, D., Kaiser, M., Demirci, B., Demirci, F., & Baser, K. H. C. (2019). Antiprotozoal activity of turkish origanum onites essential oil and its components. Molecules, 24(23), 1-16. https://doi.org/10.3390/molecules24234421

Tasneem, U., Yasin, N., & Nisa, I. (2018). Biofilm producing bacteria: A serious threat to public health in developing countries. Journal of Food Science and Nutrition, 1(2), 25-31. https://doi.org/10.35841/food-science.1.2.25-31

Tong, C., Hu, H., Chen, G., Li, Z., Li, A., & Zhang, J. (2021). Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environmental Research, 195, 110897. https://doi.org/10.1016/j.envres.2021.110897

Watson, M. G., Scardino, A. J., Zalizniak, L., & Shimeta, J. (2015). Colonisation and succession of marine biofilm-dwelling ciliates in response to environmental variation. Aquatic Microbial Ecology, 74(2), 95-105. https://doi.org/10.3354/ame01731

Publicado
2025-08-08
Como Citar
Sennouni, C. I., Oukhouia, M., Oukhouia, S., Jabeur, I., Chami, F., & Remmal, A. (2025). Effect of thymol on planktonic and biofilm cells in drinking water: An anti-cryptosporidium effect. Acta Scientiarum. Biological Sciences, 47(1), e70716. https://doi.org/10.4025/actascibiolsci.v47i1.70716
Seção
Biotecnologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus