Environmental distribution of polyhydroxyalkanoate (PHA) production in the domain Archaea
Resumo
Polyhydroxyalkanoates (PHAs) are polyesters synthesised by prokaryotes as a carbon and energy storage strategy. Due to their properties and versatility, these biopolymers are a potential alternative to conventional low-caliber plastics. However, the cost of the process, particularly the carbon sources used as raw materials, limits their large-scale production. The study of new production strains isolated from underexplored sites may be a viable option to improve production capacity. The genes encoding PHA production are organized in the phaCAB operon, with phaC being the key enzyme for polymerization. In this study, we analyzed the environmental distribution of the phaC gene in Archaea using bioinformatic tools to demonstrate the relevance of searching for archaeal strains for PHA production. We searched NCBI for PhaC synthase protein sequences in cultured Archaea and metagenomes. We found 176 sequences of PhaC synthases in cultured Archaea and 66 in metagenomic proteins. Twenty environmental categories were defined based on the associated environmental information. No changes were necessary to ensure grammatical correctness. PhaC genes were found in 41 archaeal genera and 7 possible genus candidates, with Nitrosopumilus sp. being the most abundant genus. The distribution of phaC genes was mainly associated with sediments and marine environments, with less presence in soil niches. These results contribute to the knowledge of the taxonomic diversity and habitats where the phaC gene is present in Archaea with potential for polyhydroxyalkanoate production.
Downloads
Referências
Adeleye, A. T., Odoh, C. K., Enudi, O. C., Banjoko, O. O., Osiboye, O. O., Odediran, E. T., & Louis, H. (2020). Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochemistry, 96, 174-193. https://doi.org/10.1016/j.procbio.2020.05.032
Alamgeer, M. (2019). Polyhydroxyalkanoates (PHA) genes database. Bioinformation, 15(1), 36-39. https://doi.org/10.6026/97320630015036
Anderson, I., Risso, C., Holmes, D., Lucas, S., Copeland, A., Lapidus, A., Cheng, J.-F., Bruce, D., Goodwin,L., Pitluck, S., Saunders,E., Brettin, T., Detter, J. C., Han, C., Tapia, R., Larimer, F., Land, M., Hauser, L., Woyke, T., ... Ivanova, N. (2011). Complete genome sequence of Ferroglobus placidus AEDII12DO. Standards in Genomic Sciences, 5(1), 50-60. https://doi.org/10.4056/sigs.2225018
Chek, M. F., Kim, S.-Y, Mori, T., Arsad, H., Samian, M. R., Sudesh, K., & Hakoshima, T. (2017). Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics. Scientific Reports, 7(5312), 1-15. https://doi.org/10.1038/s41598-017-05509-4
Chen, G.-Q., Chen, X.-Y., Wu, F.-Q, & Chen, J.-C. (2020). Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Advanced Industrial and Engineering Polymer Research, 3(1), 1-7. https://doi.org/10.1016/j.aiepr.2019.11.001
Choi, S. Y., Cho, I. J., Lee, Y., Kim, Y.-J., Kim, K.-J, & Lee, S. Y. (2020). Microbial polyhydroxyalkanoates and nonnatural polyesters. Advanced Materials, 32(35), 1907138. https://doi.org/10.1002/adma.201907138
Cruz, M. V., Freitas, F., Paiva, A., Mano, F., Dionísio, M., Ramos, A. M., & Reis, M. A. M. (2016). Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnology, 33(1), 206-215. https://doi.org/10.1016/j.nbt.2015.05.005
El-malek, F. A., Farag, A., Omar, S., & Khairy, H. (2020). Polyhydroxyalkanoates (PHA) from halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from mariout salt lakes. International Journal of Biological Macromolecules, 161, 1318-1328. https://doi.org/10.1016/j.ijbiomac.2020.07.258
Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5753-5798. https://doi.org/10.1099/ijsem.0.004475
Fradinho, J.C., Oehmen, A., & Reis, M. A. M. (2014). Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. Journal of Biotechnology, 185, 19–27. https://doi.org/10.1016/j.jbiotec.2014.05.035
Hai, T., Lange, D., Rabus, R., & Steinbüchel, A. (2004). Polyhydroxyalkanoate (PHA) accumulation in sulfate-reducing bacteria and identification of a class III PHA synthase (PhaEC) in Desulfococcus multivorans. Applied and Environmental Microbiology, 70(8), 4440-4448. https://doi.org/10.1128/AEM.70.8.4440-4448.2004
Han, J., Li, M., Hou, J., Wu, L., Zhou, J., & Xiang, H. (2010). Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica. Aquatic Biosystems, 6(9), 1-10. https://doi.org/10.1186/1746-1448-6-9
Huttenhower, C., Finn, R. D., & McHardy, A. C. (2023). Challenges and opportunities in sharing microbiome data and analyses. Nature Microbiology, 8(11), 1960-1970. https://doi.org/10.1038/s41564-023-01484-x
Ji, M., Williams, T. J., Montgomery, K., Wong, H. L., Zaugg, J., Berengut, J. F., Bissett, A., Chuvochina, M., Hugenholtz, P., & Ferrari, B. C. (2021). Candidatus eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. The ISME Journal, 15(9), 2692-2707. https://doi.org/10.1038/s41396-021-00944-8
Jurburg, S. D., Konzack, M., Eisenhauer, N., & Heintz-Buschart, A. (2020). The archives are half-empty: An assessment of the availability of microbial community sequencing data. Communications Biology, 3(474), 1-8. https://doi.org/10.1038/s42003-020-01204-9
Kim, J., Kim, Y.-J., Choi, S. Y., Lee, S. Y., & Kim, K.-J (2017). Crystal structure of Ralstonia eutropha polyhydroxyalkanoate synthase C-terminal domain and reaction mechanisms. Biotechnology Journal, 12(1), e1600648. https://doi.org/10.1002/biot.201600648
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Kumar, V., Kumar, S., & Singh, D. (2020). Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. International Journal of Biological Macromolecules, 147, 1255-1267. https://doi.org/10.1016/j.ijbiomac.2019.09.253
Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. https://doi.org/10.1016/j.progpolymsci.2012.06.003
Lee, S. Y., & Kim, H. U. (2015). Systems strategies for developing industrial microbial strains. Nature Biotechnology, 33(10), 1061-1072. https://doi.org/10.1038/nbt.3365
Lee, S. Y., Lee, K. M., Chan, H. N., & Steinbüchel, A. (1994). Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnology and Bioengineering, 44(11), 1337-1347. https://doi.org/10.1002/bit.260441110
Lehtovirta-Morley, L. E., Ge, C., Ross, J., Yao, H., Nicol, G. W., & Prosser, J. I. (2014). Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiology Ecology, 89(3), 542-552. https://doi.org/10.1111/1574-6941.12353
Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(1), 265-268. https://doi.org/10.1093/nar/gkz991
Magagula, S. I., Mohapi, M., Sefadi, J. S., & Mochane, M. J. (2021). The production and applications of microbial-derived polyhydroxybutyrates. In A. Vaishnav, & D. K. Choudhary (Eds), Microbial polymers (pp. 3-43). Springer. https://doi.org/10.1007/978-981-16-0045-6
McCool, G. J., & Cannon, M. C. (2001). PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. Journal of Bacteriology, 183(14), 4235-4243. https://doi.org/10.1128/JB.183.14.4235-4243.2001
Neoh, S. Z., Chek, M. F., Tan, H. T., Linares-Pastén, J. A., Nandakumar, A., Hakoshima, T., & Sudesh, K. (2022). Polyhydroxyalkanoate synthase (PhaC): The key enzyme for biopolyester synthesis. Current Research in Biotechnology, 4, 87-101. https://doi.org/10.1016/j.crbiot.2022.01.002
Obruča, S., Dvořák, P., Sedláček, P., Koller, M., Sedlář, K., Pernicová, I., & Šafránek, D. (2022). Polyhydroxyalkanoates synthesis by halophiles and thermophiles: Towards sustainable production of microbial bioplastics. Biotechnology Advances, 58, 107906. https://doi.org/10.1016/j.biotechadv.2022.107906
Obruca, S., Sedlacek, P., Koller, M., Kucera, D., & Pernicova, I. (2018). Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnology Advances, 36(3), 856-870. https://doi.org/10.1016/j.biotechadv.2017.12.006
Obulisamy, P. K., & Mehariya, S. (2021). Polyhydroxyalkanoates from extremophiles: A review. Bioresource Technology, 325, 124653. https://doi.org/10.1016/j.biortech.2020.124653
Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M., & Pedrós-Alió, C. (2016). Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiology and Molecular Biology Reviews, 80(4), 929-954. https://doi.org/10.1128/MMBR.00003-16
Pu, N., Wang, M.-R., & Li, Z.-J. (2020). Characterization of polyhydroxyalkanoate synthases from the marine bacterium Neptunomonas concharum JCM17730. Journal of Biotechnology, 319, 69-73. https://doi.org/10.1016/j.jbiotec.2020.06.002
Quillaguaman, J., Guzman, H., Van-thuoc, D., & Hatti-kaul, R. (2010). Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. Applied Microbiology and Biotechnology, 85(6), 1687-1696. https://doi.org/10.1007/s00253-009-2397-6
Rehm, B. H. A. (2003). Polyester synthases: Natural catalysts for plastics. Biochemical Journal, 376(Pt 1), 15-33. https://doi.org/10.1042/BJ20031254
Salwan, R., & Sharma, V. (2020). Physiological and biotechnological aspects of extremophiles. Academic Press. https://doi.org/10.1016/B978-0-12-818322-9.00002-2
Singleton, C. M., Petriglieri, F., Kristensen, J. M., Kirkegaard, R. H., Michaelsen, T. Y., Andersen, M. H., Kondrotaite, Z., Karst, S. M., Dueholm, M. S., Nielsen, P. H., & Albertsen, M. (2021). Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nature Communications, 12(1), 1-13. https://doi.org/10.1038/s41467-021-22203-2
UniProt. (2023). UniProtKB – Protein knowledgebase. https://www.uniprot.org
Vuong, P., Lim, D. J., Murphy, D. V., Wise, M. J., Whiteley, A. S., & Kaur, P. (2021). Developing bioprospecting strategies for bioplastics through the large-scale mining of microbial genomes. Frontiers in Microbiology, 12(697309), 1-12. https://doi.org/10.3389/fmicb.2021.697309
Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2023). The conserved domain database in 2023. Nucleic Acids Research, 51(1), 384-388. https://doi.org/10.1093/nar/gkac1096
Wang, L., Liu, Q., Wu, X., Huang, Y., Wise, M. J., Liu, Z., Wang, W., Hu, J., & Wang, C. (2019). Bioinformatics analysis of metabolism pathways of archaeal energy reserves. Scientific Reports, 9(1034), 1-12. https://doi.org/10.1038/s41598-018-37768-0
Copyright (c) 2025 Monica Alejandra Rodriguez Aristizabal, Natalia Conde Martinez, Luis Alejandro Acosta González (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.