Molecular identification of the main raptor bird species from the Arequipa-Lima region, Peru, using sanger sequencing

Palavras-chave: genome; amplification; mitochondrial DNA; COI; NAD2.

Resumo

A total of 14 feather samples were collected from the following birds of prey: Buteo polyosoma, Geranoaetus melanoleucus, Bubo magellanicus, Athene cunicularia, Falco sparverius, Vultur gryphus, Spizaetus ornatus, Falco rufigularis, Morphnus guianensis, Oroaetus isidori, Spizaetus melanoleucus, Spizaetus tyrannus, Harpyhaliaetus solitarius, and Accipiter bicolor. The taxonomic identity of 12 birds of prey species from two regions was inferred, with similarity percentages ranging from 99-100% compared to the database sequences. While the amplification of D-Loop/12S was unsuccessful due to the specific primers for Vultur gryphus, the COI and NAD2 regions showed high efficacy in the molecular identification of the analyzed samples. The analysis of the COI and NAD2 sequences revealed a marked intraspecific genetic divergence, with divergence percentages of up to 6-8% in some Neotropical birds of prey from Arequipa compared to the reference sequences. This finding suggests more complex patterns of variability and differences in regional sequence homology in these species than in North American birds. DNA barcodes based on mitochondrial sequences, particularly COI and NAD2, have proven to be accurate and non-invasive tools for the taxonomic identification of these birds of prey using feather samples as a source of genetic material.

Downloads

Não há dados estatísticos.

Referências

Aliabadian, M., Kaboli, M., Nijman, V., & Vences, M. (2009). Molecular identification of birds: Performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE, 4(1), 1-8. https://doi.org/10.1371/journal.pone.0004119

Argüello-Sánchez, L. E., & García-Feria, L. M. (2014). La genética como herramienta para el estudio y conservación del género Alouatta en México. Acta Zoológica Mexicana, 30(2), 387-394. https://doi.org/10.21829/azm.2014.302110

Barrowclough, G. F., Gutierrez, R. J., & Groth, J. G. (1999). Phylogeography of spotted owl (Strix occidentalis) populations based on mitochondrial DNA sequences: Gene flow, genetic structure, and a novel biogeographic pattern. Evolution, 53(3), 919-931. https://doi.org/10.1111/j.1558-5646.1999.tb05380.x

Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwartz, M. K., & Luikart, G. (2009). Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources, 9(5), 1279-1301. https://doi.org/10.1111/j.1755-0998.2009.02699.x

Bayard De Volo, S., Reynolds, R. T., Douglas, M. R., & Antolin, M. F. (2008). An improved extraction method to increase DNA yield from molted feathers. The Condor, 110(4), 762–767. https://doi.org/10.1525/cond.2008.8586

Borisenko, A. V., Lim, B. K., Ivanova, N. V., Hanner, R. H., & Hebert, P. D. N. (2008). DNA barcoding in surveys of small mammal communities: A field study in Suriname. Molecular Ecology Resources, 8(3), 471-479. https://doi.org/10.1111/j.1471-8286.2007.01998.x

Chaves, B. R. N., Chaves, A. V., Nascimento, A. C. A., Chevitarese, J., Vasconcelos, M. F., & Santos, F. R. (2015). Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group. Molecular Ecology Resources, 15(4), 921-931. https://doi.org/10.1111/1755-0998.12344

Clare, E. L., Lim, B. K., Engstrom, M. D., Eger, J. L., & Hebert, P. D. N. (2007). DNA barcoding of Neotropical bats: Species identification and discovery within Guyana. Molecular Ecology Notes, 7(2), 184-190. https://doi.org/10.1111/j.1471-8286.2006.01657.x

Dai, Y., Lin, Q., Fang, W., Zhou, X., & Chen, X. (2015). Noninvasive and nondestructive sampling for avian microsatellite genotyping: A case study on the vulnerable Chinese Egret (Egretta eulophotes). Avian Research, 6(24), 1-9. https://doi.org/10.1186/s40657-015-0034-x

Frankham, R., Ballou, J. D., & Briscoe, D. A. (2004). A primer of conservation genetics. Cambridge University Press. https://doi.org/10.1017/CBO9780511817359

Griffiths, R., & Tiwari, B. (1995). Sex of the last wild Spix's Macaw. Nature, 375(6528), 454. https://doi.org/10.1038/375454a0

Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23(4), 167-172. https://doi.org/10.1016/j.tig.2007.02.001

Hebert, P. D. N., Ratnasingham, S., & Waard, J. R. (2003). Barcoding animal life: Cytochrome C oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B, 270(Suppl. 1), 96-99. https://doi.org/10.1098/rsbl.2003.0025

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2(10), 1657-1663. https://doi.org/10.1371/journal.pbio.0020312

Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852-859. https://doi.org/10.1080/10635150500354886

Horváth, M. B., Martínez-Cruz, B., Negro, J. J., Kalmár, L., & Godoy, J. A. (2005). An overlooked DNA source for non-invasive genetic analysis in birds. Journal of Avian Biology, 36(1), 84-88. https://doi.org/10.1111/j.0908-8857.2005.03370.x

Jinbo, U., Kato, T., & Ito, M. (2011). Current progress in DNA barcoding and future implications for entomology. Entomological Science, 14(2), 107-124. https://doi.org/10.1111/j.1479-8298.2011.00449.x

Kerr, K. C. R., Stoeckle, M. Y., Dove, C. J., Weigt, L. A., Francis, C. M., & Hebert, P. D. N. (2007). Identificación de aves a través de secuencias de ADN: Una prueba de concepto. PLoS ONE, 4(10), 1-7. https://doi.org/10.1111/j.1471-8286.2007.01670.x

Kirkpatrick, R. C., & Emerton, L. (2010). Killing tigers to save them: Fallacies of the farming argument. Conservation Biology, 24(3), 655-659. https://doi.org/10.1111/j.1523-1739.2010.01468.x

Lohman, D. J., Ingram, K. K., Prawiradilaga, D. M., Winker, K., Sheldon, F. H., Moyle, R. G., Ng, P. K. L., Ong, P. S., Wang, L. K., Braile, T. M., Astuti, D., & Meier, R. (2009). Cryptic genetic diversity in "widespread" Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biological Conservation, 143(8), 1885-1890. https://doi.org/10.1016/j.biocon.2010.04.042

Milá, B., Tavares, E. S., Muñoz Saldaña, A., Karubian, J., Smith, T. B., & Baker, A. J. (2012). A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity. PLoS ONE, 7(7), 1-12. https://doi.org/10.1371/journal.pone.0040541

Moritz, C. (1994). Defining 'evolutionarily significant units' for conservation. Trends in Ecology & Evolution, 9(10), 373-375. https://doi.org/10.1016/0169-5347(94)90057-4

Pacheco, V., Graham, C. H., Carnaval, A. C., Doan, T., Sanders, N. J., Cuesta, F., Carnaval, A. C., Rahbek, C., Duellman, W. E., Premoli, A. C., Fjeldså, J., Kristiansen, J. B., Territorial, C. J., Young, K. R., Ulloa, C. U., Jørgensen, P. M., Adalsteinsson, S., & Graham, C. H. (2009). The origins of Amazonian bird diversity. The Auk, 126(3), 508-518. https://doi.org/10.1525/auk.2009.08194

Rudnick, J. A., Katzner, T. E., Bragin, E. A., & DeWoody, J. A. (2007). Species identification of birds through genetic analysis of naturally shed feathers. Molecular Ecology Resources, 7(5), 757-762. https://doi.org/10.1111/j.1471-8286.2007.01806.x

Rudnick, J. A., Katzner, T. E., Bragin, E. A., & DeWoody, J. A. (2008). A non-invasive genetic evaluation of population size, natal philopatry, and roosting behavior of non-breeding eastern imperial eagles (Aquila heliaca) in central Asia. Conservation Genetics, 9, 667-676. 10.1007/s10592-007-9397-9

Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F., & Hughes, C. E. (2012). Evolutionary islands in the Andes: Persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 39(5), 884-900. https://doi.org/10.1111/j.1365-2699.2011.02644.x

Segelbacher, G., Höglund, J., & Storch, I. (2003). From connectivity to isolation: Genetic consequences of population fragmentation in capercaillie across Europe. Molecular Ecology, 12(7), 1773-1780. https://doi.org/10.1046/j.1365-294X.2003.01873.x

Seki, S.-I. (2006). Application of molted feathers as noninvasive samples to studies on the genetic structure of pigeons (Aves: Columbidae). Journal of Forest Research, 11(2), 125-129. https://doi.org/10.1007/s10310-005-0194-3

Taberlet, P., & Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68(1-2), 41-55. https://doi.org/10.1111/j.1095-8312.1999.tb01157.x

Tavares, E. S., & Baker, A. J. (2008). Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evolutionary Biology, 8(81), 1-14. https://doi.org/10.1186/1471-2148-8-81

Tavares, E. S., Gonçalves, P., Miyaki, C. Y., & Baker, A. J. (2011). DNA barcode detects high genetic structure within Neotropical bird species. PLoS ONE, 6(12), 1-13. https://doi.org/10.1371/journal.pone.0028543

Publicado
2025-08-08
Como Citar
Paredes Fernandez, W. J., Suaña Quispe, M. E., Ramos Paredes, A. R., Huarilloclla Cordova, E. A., Cuellar Ramos, T. B., & Mayta Malpartida, H. (2025). Molecular identification of the main raptor bird species from the Arequipa-Lima region, Peru, using sanger sequencing. Acta Scientiarum. Biological Sciences, 47(1), e72639. https://doi.org/10.4025/actascibiolsci.v47i1.72639
Seção
Zoologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus