Comparative Phytochemical and Antimicrobial Analyses of Siphonochilus aethiopicus and Monodora myristica

  • Olorunjuwon Omolaja Bello University of Medical Sciences https://orcid.org/0000-0003-1510-0760
  • Temitope Kudirat Bello Elizade University
  • Glory Ilokugbe Baysah Adventist University of West Africa
  • Kemi Medinat Olawale Federal Polytechnic
  • Aderonke Mosunmola Ilemobayo University of Medical Sciences
  • Mathew Olujenyo Oni Adeleke University
  • Adeleke Osho Redeemers University

Resumo

Medicinal plants are used as interventions and alternatives in many countries including Africa. The phytochemicals produced by plants possess potential antimicrobial activities against pathogens through various mechanisms of action. This study aimed to compare the phytochemical and antimicrobial constituents of rhizomes of Siphonochilus aethiopicus (African ginger) and seeds of Monodora myristica (African nutmeg). The rhizomes of S. aethiopicus and seeds of M. myristica were separately and thoroughly washed, peeled, sliced, room-dried and ground. The crude extracts of the plants were obtained using aqueous and methanol as solvents according to standard procedures while the phytochemical constituents were also evaluated using standard methods. The antimicrobial activities of the extracts were determined using the agar-well diffusion method. The bacterial species investigated were Escherichia coli, Enterococcus faecalis, Klebsiellla pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, while the fungal species were Aspergillus flavus, Aspergillus glaucus, Candida albicans, Candida tropicalis, Trichophyton mentagrophytes and Trichophyton rubrum. The plant extracts contained alkaloids, saponins, phenols, flavonoid, tannin, phytate, terpenoids and cyanogenic glycoside in varying qualities and quantities. The extracts of the plants exerted antimicrobial effects against the test organisms. There was a significant difference between the antibacterial activities at 12.5 and 25 mg mL-1 concentrations (p = 0.022). The study revealed that the phytochemical components and antimicrobial properties of M. myristica extracts exhibit comparatively greater potency than those of S. aethiopicus, though the variances were not found to be statistically significant. The extracts of these plants could be purified, formulated and standardized for the production broad-spectrum antimicrobial agents.

Downloads

Não há dados estatísticos.

Referências

Al-Tannak, N. F., Anyam, J. V., Igoli, N. P., Gray, A. I., Alzharani, M. A., & Igoli, J. O. (2022). A new sesquiterpene from South African wild ginger (Siphonochilus aethiopicus (Schweinf) B. L. Burtt). Natural Product Research, 36(19), 4943-4948. https://doi.org/10.1080/14786419.2021.1914029

Atindehou, M., Hounguè, R., Adovelande, J., Sanni, A., & Lagnika, L. (2019). Phytochemical screening and antimicrobial activities of Siphonochilus aethiopicus extracts from Benin. Journal of Scientific and Innovative Research, 8(3), 73-77.

Balakrishnan, S., Ibrahim, K. S., Duraisamy, S., Sivaji, I., Kandasamy, S., Kumarasamy, A., & Kumar, N. S. (2020). Antiquorum sensing and antibiofilm potential of biosynthesized silver nanoparticles of Myristica fragrans seed extract against MDR Salmonella enterica serovar typhi isolates from asymptomatic typhoid carriers and typhoid patients. Environmental Science and Pollution Research, 27, 2844-2856. https://doi.org/10.1007/s11356-019-07169-5

Bello, O. O., Lebi, F. O., Bello, T. K., & Oluwafemi, Y. D. (2022). Antibacterial and phytochemical evaluations of Alternanthera repens (L.) and honeys on Pseudomonas aeruginosa of clinical origin. Egyptian Pharmaceutical Journal, 21(3), 273-281. https://doi.org/10.4103/epj.epj_10_22

Bello, T. K., & Bello, O. O. (2022). Public health implications of antibiotic-resistant bacteria associated with suya spices in Nigeria. Journal of Nutrition and Food Security, 7(3), 340-354. https://doi.org/10.18502/jnfs.v7i3.10199

Coopoosamy, R. M., Naidoo, K., Buwa-Komoreng, L., & Mayekiso, B. (2010). Screening of Siphonochilus aetiopicus (Schweinf.) B. L. Burtt for antibacterial and antifungal properties. Journal of Medicinal Plants Research, 4(12), 1228-1231.

Das, S., Singh, V. K., Dwivedy, A. K., Chaudhari, A. K., Upadhyay, N., Singh, A., Deepika, & Dubey, N. K. (2020). Fabrication, characterization and practical efficacy of Myristica fragrans essential oil nanoemulsion delivery system against postharvest biodeterioration. Ecotoxicology and Environmental Safety, 189, 110000. https://doi.org/10.1016/j.ecoenv.2019.110000

Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacolology, 4, 1-10. https://doi.org/10.3389/fphar.2013.00177

Enabulele, S. A., Oboh, F. O. J., & Uwadiae, E. O. (2014). Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR Journal of Pharmacy and Biological Sciences, 9(4), 1-6. https://doi.org/10.9790/3008-09430106

Evans, W.C. (1989). Trease and Evans’ Pharmacognosy (15th ed.). Harcourt Brace and Company.

Firempong, C. K., Andoh, L. A., Akanwariwiak, W. G., Addo-Fordjour, P., & Adjakofi, P. (2016). Phytochemical screening and antifungal activities of crude ethanol extracts of red-flowered silk cotton tree (Bombax buonopozense) and Calabash nutmeg (Monodora myristica) on Candida albicans. Journal of Microbiology and Antimicrobials, 8(4), 22-27. https://doi.org/10.5897/JMA2015.0350

Godwin, O. O., Bello, O. O., Thomson, A. D., & Idu, M. (2021). Phytochemistry and antibacterial activities of Fiscus exasperata Vahl. on selected clinical isolates. Acta Microbiologica Bulgarica, 37(2), 135-142.

Harbone, J. B. (1998). A guide to modern techniques of plant analysis (3rd ed.). Champman and Hall.

Hoda, S., Vermani, M., Joshi, R. K., Shankar, J., & Vijayaraghavan, P. (2020). Anti-melanogenic activity of Myristica fragrans extract against Aspergillus fumigatus using phenotypic based screening. BMC Complementary Medicine and Therapies, 20(67), 1-13. https://doi.org/10.1186/s12906-020-2859-z

Igoli, N. P., & Igoli, J. O. (2017). Lesser known aromatic plants in Nigeria. In H. El-Sherry (Ed.), Aromatic and Medicinal Plants - Back to Nature. IntechOpen. https://doi.org/10.5772/66484

Igoli, N. P., Al-Tannak, N. F., Ezenyi, I. C., Gray, A. I., & Igoli, J. O. (2021). Antiplasmodial activity of a novel diarylheptanoid from Siphonochilus aethiopicus. Natural Product Research, 35(24), 5588-5595. https://doi.org/10.1080/14786419.2020.1799358

Igoli, N. P., Clements, C. J., Singla, R. K., Igoli, J. O., Uche, N., & Gray, A. I. (2014). Anti-trypanosomal activity & docking studies of Crateva adansonii DC leaves: novel multifunctional scaffolds. Current Topics in Medicinal Chemistry, 14(8), 981-990. https://doi.org/10.2174/1568026614666140324120006

Jadimurthy, R., Jagadish, S., Nayak, S. C., Kumar, S., Mohan, C. D., & Rangappa, K. S. (2023). Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance. Life, 13(4), 948. https://doi.org/10.3390/life13040948

Jasson, T. I., Jimoh, M. O., Daniels, C. W., Nchu, F., & Laubscher, C. P. (2023). Enhancement of antioxidant potential, phytochemicals, nutritional properties, and growth of Siphonochilus aethiopicus (Schweinf.) B. L. Burtt with different dosages of compost tea. Horticulturae, 9(2), 274. https://doi.org/10.3390/horticulturae9020274

Kaur, R. (2015). Alkaloids-important therapeutic secondary metabolites of plant origin. Journal of Critical Review, 2, 1-8.

Kone, J. K., Bello, O. O., & Onifade, A. K. (2020). Antimicrobial potency of Euphorbia heterophylla against selected clinical pathogens. Proceedings of the Nigerian Academy of Science, 13(2), 20-32. https://doi.org/10.57046/MUYF2267

Krishnamoorthy, B. S., Nattuthurai, N., Logeshwari, R., Dhaslima, N. H., & Syedali, F. I. (2014). Phytochemical study of Hybanthus enneaspermus (Linn.) F. Muell. Journal of Pharmacognosy and Phytochemistry, 3(1), 6-7.

Mokgehle, S. N., Tesfay, S. Z., Araya, H. T., & du Plooy, C. P. (2017). Antioxidant activity and soluble sugars of African ginger (Siphonochilus aethiopicus) in response to irrigation regimen and nitrogen levels, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 67(5), 425-434. https://doi.org/10.1080/09064710.2017.1293723

Nkwocha, C. C., Nworah, F. N., Okagu, I. U., Nwagwe, O. R., Uchendu, N. O., Paul-Onyia, D. B, & Obeta, S. (2018). Proximate and phytochemical analysis of Monodora myristica (African Nutmeg) from Nsukka, Enugu State, Nigeria. Journal of Food and Nutrition Research, 6(9), 597-601. https://doi.org/10.12691/jfnr-6-9-9

Noites, A., Borges, I., Araújo, B., Silva, J. C. G. E., Oliveira, N. M., Machado, J., & Pinto, E. (2023). Antimicrobial activity of some medicinal herbs to the treatment of cutaneous and mucocutaneous infections: preliminary research. Microorganisms, 11(2), 272. https://doi.org/10.3390/microorganisms11020272

Noudogbessi, J. P., Yedomonhan, H., Alitonou, G. A., Chalard, P., Figueredo, G., Adjalian, E. J.-N., Avlessi, F., Chalchat, J.-C., & Sohounhloue, D. K. C. (2012). Physical characteristics and chemical compositions of the essential oils extracted from different parts of Siphonochilus aethiopicus (Schweinf.) B. L. Burtt (Zingiberaceae) harvested in Benin. Journal of Chemical and Pharmaceutical Research, 4(11), 4845-4851.

Oni, M. O., Bello, O. O., Ademola, R. A., Mba, U. D., & Oni, V. O. (2021). Antimicrobial and cytotoxic properties of the leaf and stem bark extracts of Faidherbia albida. Acta Microbiologica Bulgarica, 37(4), 209-214. https://actamicrobio.bg/archive/issue-4-2021/amb-4-2021-article-6-summary.html

Owotokomo, I. A., & Ekundayo, O. (2012). Comparative study of the essential oils of Monodora myristica from Nigeria. European Chemical Bulletin, 1(6), 263-265.

Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J. (2007). Terpenes: substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55, 315-327. https://doi.org/10.1007/s00005-007-0039-1

Seile, B.P., Bareetseng, S., Koitsiwe, M. T., & Aremu, A. O. (2022). Indigenous knowledge on the uses, sustainability and conservation of african ginger (Siphonochilus aethiopicus) among two communities in Mpumalanga Province, South Africa. Diversity, 14(3), 192. https://www.mdpi.com/1424-2818/14/3/192#

Sharififar, F., Moshafi, M. H., Dehghan- Nudehe, G., Ameri, A., Alishahi, F., & Purhematy, A. (2009). Bioassay screening of the essential oil and various extracts from four spices medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(3), 317-322.

Sindhusha, V. B., Malaiappan, S., & Kumar, R. S. (2023). Preparation and evaluation of antimicrobial properties and cytotoxic potentials of Nutmeg and Tulsi Gel. Cureus, 15(8), e44140. https://doi.org/10.7759/cureus.44140

Sipahelut, S. G., Patty, J. A., Patty, Z., Kastanja, A. Y., & Lekahena, V. (2019). The antibacterial and antifungal activity of essential oil derived from the flesh of nutmeg fruit. EurAsian Journal of BioSciences, 13(1), 93-98.

Sofowora, A. (2008). Medicinal plants and medicine in Africa (3rd ed.). John Wiley Spectrum Books.

Sultan, M. T., Saeed, F., Raza, H., Ilyas, A., Sadiq, F., Musarrat, A., Afzaal, M., Hussain, M., Raza, M. A., & JBawi, E. Al. (2023). Nutritional and therapeutic potential of nutmeg (Myristica fragrans): a concurrent review. Cogent Food & Agriculture, 9(2). https://doi.org/10.1080/23311932.2023.2279701

Suthisamphat, N., Dechayont, B., Phuaklee, P., Prajuabjinda, O., Vilaichone, R.-K., Itharat, A., Mokmued, K., & Prommee, N. (2020). Anti-helicobacter pylori, anti-inflammatory, cytotoxic, and antioxidant activities of mace extracts from Myristica fragrans. Evidence-Based Complementary and Alternative Medicine, 1-6. https://doi.org/10.1155/2020/7576818

Udeala, O. K., Onyechi, J. O., & Agu, S. I. (1980). Preliminary evaluation of dike fat, a new tablet lubricant. Journal of Pharmacy and Pharmacology, 32(1), 6-9. https://doi.org/10.1111/j.2042-7158.1980.tb12834.x

Verrillo, M., Salzano, M., Cozzolino, V., Spaccini, R., & Piccolo, A. (2021). Bioactivity and antimicrobial properties of chemically characterized compost teas from different green composts. Waste Management, 120, 98-107. https://doi.org/10.1016/j.wasman.2020.11.013

Xego. S., Kambizi. L., & Nchu. F. (2017). Effects of different hydroponic substrate combinations and watering regimes on physiological and anti-fungal properties of Siphonochilus aethiopicus. African Journal of Traditional, Complementary and Alternative Medicines, 14(3), 89-104. https://doi.org/10.21010/ajtcam.v14i3.10

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research progress on antibacterial activities and mechanisms of natural alkaloids: a review. Antibiotics (Basel), 10(3), 318. https://doi.org/10.3390/antibiotics10030318

Publicado
2025-04-14
Como Citar
Bello, O. O., Bello, T. K., Baysah, G. I., Olawale, K. M., Ilemobayo, A. M., Oni, M. O., & Osho, A. (2025). Comparative Phytochemical and Antimicrobial Analyses of Siphonochilus aethiopicus and Monodora myristica . Acta Scientiarum. Biological Sciences, 47(1), e72812. https://doi.org/10.4025/actascibiolsci.v47i1.72812
Seção
Microbiologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus